doi: 10.3934/dcds.2020308

Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation

Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

* Corresponding author: Huan-Song Zhou

Received  January 2020 Revised  June 2020 Published  August 2020

Fund Project: This work was supported by NFSC (Grant Nos. 11871387, 11931012) and partially by the fundamental Research Funds for the Central Universities (WUT: 2019IVA106, 2019IB009)

Let
$ a>0,b>0 $
and
$ V(x)\geq0 $
be a coercive function in
$ \mathbb R^2 $
. We study the following constrained minimization problem on a suitable weighted Sobolev space
$ \mathcal{H} $
:
$ \begin{equation*} e_{a}(b): = \inf\left\{E_{a}^{b}(u):u\in\mathcal{H}\ \mbox{and}\ \int_{\mathbb R^{2}}|u|^{2}dx = 1\right\}, \end{equation*} $
where
$ E_{a}^{b}(u) $
is a Kirchhoff type energy functional defined on
$ \mathcal{H} $
by
$ \begin{equation*} E_{a}^{b}(u) = \frac{1}{2}\int_{\mathbb R^{2}}[|\nabla u|^{2}+V(x)u^{2}]dx+\frac{b}{4}\left(\int_{\mathbb R^{2}}|\nabla u|^{2}dx\right)^{2}-\frac{a}{4}\int_{\mathbb R^{2}}|u|^{4}dx. \end{equation*} $
It is known that, for some
$ a^{\ast}>0 $
,
$ e_{a}(b) $
has no minimizer if
$ b = 0 $
and
$ a\geq a^{\ast} $
, but
$ e_{a}(b) $
has always a minimizer for any
$ a\geq0 $
if
$ b>0 $
. The aim of this paper is to investigate the limit behaviors of the minimizers of
$ e_{a}(b) $
as
$ b\rightarrow0^{+} $
. Moreover, the uniqueness of the minimizers of
$ e_{a}(b) $
is also discussed for
$ b $
close to 0.
Citation: Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020308
References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$: Existence and multiplicity results, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[4]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.  Google Scholar

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[6]

P. D'Ancona and S. Spagnolo, Nonlinear perturbations of the Kirchhoff equation, Comm. Pure Appl. Math., 47 (1994), 1005-1029.  doi: 10.1002/cpa.3160470705.  Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, "Nauka", Moscow, 1989.  Google Scholar

[9]

Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.  Google Scholar

[10]

Y. GuoC. Lin and J. Wei, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIMA J. Math. Anal., 49 (2017), 3671-3715.  doi: 10.1137/16M1100290.  Google Scholar

[11]

Y. GuoX. Zeng and H.-S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.  Google Scholar

[12]

Y. GuoX. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.  Google Scholar

[13]

H. GuoY. Zhang and H.-S. Zhou, Blow-up solutions for a Kirchhoff type elliptic equations with trapping potential, Commun. Pure Appl. Anal., 17 (2018), 1875-1897.  doi: 10.3934/cpaa.2018089.  Google Scholar

[14]

H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.  doi: 10.1016/j.aml.2018.07.023.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, $2^nd$ edition, Courant Institute of Mathematical Sciences, New York, 2011.  Google Scholar

[16]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\Bbb{R}^3$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.  Google Scholar

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\Bbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[18]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbb R^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\Bbb R^3$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[21]

P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger-Newton problem, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 60, 41 pp. doi: 10.1007/s00526-020-1726-6.  Google Scholar

[22]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA, 78 (1981), 6592-6595.  doi: 10.1073/pnas.78.11.6592.  Google Scholar

[23]

W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978.   Google Scholar
[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[27]

X. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.  Google Scholar

[28]

X. Zeng and Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.  Google Scholar

[29]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.  Google Scholar

show all references

References:
[1]

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330.  doi: 10.1090/S0002-9947-96-01532-2.  Google Scholar

[2]

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2013), 1-135.  doi: 10.3934/krm.2013.6.1.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $R^N$: Existence and multiplicity results, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[4]

D. CaoS. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.  doi: 10.1007/s00526-015-0930-2.  Google Scholar

[5]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys., 71 (1999), 463-512.  doi: 10.1103/RevModPhys.71.463.  Google Scholar

[6]

P. D'Ancona and S. Spagnolo, Nonlinear perturbations of the Kirchhoff equation, Comm. Pure Appl. Math., 47 (1994), 1005-1029.  doi: 10.1002/cpa.3160470705.  Google Scholar

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Mathematical Analysis and Applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981.  Google Scholar

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, "Nauka", Moscow, 1989.  Google Scholar

[9]

Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein conden-sates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.  Google Scholar

[10]

Y. GuoC. Lin and J. Wei, Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates, SIMA J. Math. Anal., 49 (2017), 3671-3715.  doi: 10.1137/16M1100290.  Google Scholar

[11]

Y. GuoX. Zeng and H.-S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations, 256 (2014), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.  Google Scholar

[12]

Y. GuoX. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.  Google Scholar

[13]

H. GuoY. Zhang and H.-S. Zhou, Blow-up solutions for a Kirchhoff type elliptic equations with trapping potential, Commun. Pure Appl. Anal., 17 (2018), 1875-1897.  doi: 10.3934/cpaa.2018089.  Google Scholar

[14]

H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.  doi: 10.1016/j.aml.2018.07.023.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, $2^nd$ edition, Courant Institute of Mathematical Sciences, New York, 2011.  Google Scholar

[16]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\Bbb{R}^3$ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106.  doi: 10.1007/s00526-015-0894-2.  Google Scholar

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\Bbb R^3$, J. Differential Equations, 252 (2012), 1813-1834.  doi: 10.1016/j.jde.2011.08.035.  Google Scholar

[18]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p} = 0$ in $\mathbb R^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\Bbb R^3$, J. Differential Equations, 257 (2014), 566-600.  doi: 10.1016/j.jde.2014.04.011.  Google Scholar

[21]

P. Luo, S. Peng and C. Wang, Uniqueness of positive solutions with concentration for the Schrödinger-Newton problem, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 60, 41 pp. doi: 10.1007/s00526-020-1726-6.  Google Scholar

[22]

K. Mcleod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA, 78 (1981), 6592-6595.  doi: 10.1073/pnas.78.11.6592.  Google Scholar

[23]

W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York-London, 1978.   Google Scholar
[25]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[26]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[27]

X. Zeng, Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 37 (2017), 1749-1762.  doi: 10.3934/dcds.2017073.  Google Scholar

[28]

X. Zeng and Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 74 (2017), 52-59.  doi: 10.1016/j.aml.2017.05.012.  Google Scholar

[29]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys., 101 (2000), 731-746.  doi: 10.1023/A:1026437923987.  Google Scholar

[1]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[8]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[18]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

2019 Impact Factor: 1.338

Article outline

[Back to Top]