-
Previous Article
Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials
- DCDS Home
- This Issue
-
Next Article
Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation
Pomeau-Manneville maps are global-local mixing
1. | Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy |
2. | Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy, and, Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy |
We prove that a large class of expanding maps of the unit interval with a $ C^2 $-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $ T(x) = x + x^{p+1} $ mod 1 ($ p \ge 1 $), the Liverani-Saussol-Vaienti maps (with index $ p \ge 1 $) and many generalizations thereof.
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. Google Scholar |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. Google Scholar |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. Google Scholar |
show all references
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. Google Scholar |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. Google Scholar |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. Google Scholar |
[1] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[2] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[3] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[4] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[5] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[6] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[7] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[8] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[9] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[10] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[11] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[12] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]