We prove that a large class of expanding maps of the unit interval with a $ C^2 $-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $ T(x) = x + x^{p+1} $ mod 1 ($ p \ge 1 $), the Liverani-Saussol-Vaienti maps (with index $ p \ge 1 $) and many generalizations thereof.
Citation: |
[1] | C. Bonanno, P. Giulietti and M. Lenci, Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61. doi: 10.1016/j.chaos.2018.03.020. |
[2] | C. Bonanno, P. Giulietti and M. Lenci, Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213. doi: 10.1088/1361-6544/aadc04. |
[3] | D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. |
[4] | P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. |
[5] | M. Lenci, On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514. doi: 10.1007/s00220-010-1043-6. |
[6] | M. Lenci, Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170. |
[7] | M. Lenci, Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903. doi: 10.3934/dcds.2017163. |
[8] | M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242. doi: 10.1007/BF00534111. |
[9] | C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685. doi: 10.1017/S0143385799133856. |
[10] | P. Manneville, Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243. doi: 10.1051/jphys:0198000410110123500. |
[11] | Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197. doi: 10.1007/BF01197757. |
[12] | M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314. doi: 10.1007/BF02788928. |
[13] | M. Thaler, Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96. doi: 10.1007/BF02760623. |
[14] | M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. |