doi: 10.3934/dcds.2020310

Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials

1. 

Department of Mathematics, University of Tennessee - Knoxville, 227 Ayress Hall, 1403 Circle Drive, Knoxville, TN 37996, USA

2. 

Integrated Science Program, Office of International Affairs, Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

* Corresponding author: phan@utk.edu

Received  March 2020 Revised  July 2020 Published  August 2020

Fund Project: T. Phan's research is partly supported by the Simons Foundation, grant # 354889. The third author would like to thank the Department of Mathematics at the University of Tennessee, Knoxville for its hospitality from which part of this work was done

This paper studies second order elliptic equations in both divergence and non-divergence forms with measurable complex valued principle coefficients and measurable complex valued potentials. The PDE operators can be considered as generalized Schrödinger operators. Under some sufficient conditions, we prove existence, uniqueness, and regularity estimates in Sobolev spaces for solutions to the equations. We particularly show that the non-zero imaginary parts of the potentials are the main mechanisms that control the solutions. Our results can be considered as limiting absorption principle for Schrödinger operators with measurable coefficients and they could be useful in applications. The approach is based on the perturbation technique that freezes the potentials. The results of the paper not only generalize known results but also provide a key ingredient for the study of $ L^p $-diffusion phenomena for dissipative wave equations.

Citation: Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020310
References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.  Google Scholar

[2]

L. Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J., 35 (1986), 225-233.  doi: 10.1512/iumj.1986.35.35013.  Google Scholar

[3]

S.-S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[4]

S.-S. Byun and L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal., 176 (2005), 271-301.  doi: 10.1007/s00205-005-0357-6.  Google Scholar

[5]

L. A. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168.   Google Scholar

[7]

J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal., 272 (2017), 2987-3018.  doi: 10.1016/j.jfa.2016.12.008.  Google Scholar

[8]

H. Dong and D. Kim, Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth, Comm. Partial Differential Equations, 36 (2011), 1750-1777.  doi: 10.1080/03605302.2011.571746.  Google Scholar

[9]

H. Dong and D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075-1098.  doi: 10.1137/100794614.  Google Scholar

[10]

H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.  doi: 10.1016/j.aim.2014.12.037.  Google Scholar

[11]

H. Dong and N. V. Krylov, Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, Calc. Var. Partial Differential Equations, 58 (2019), Art. 145, 32 pp. doi: 10.1007/s00526-019-1591-3.  Google Scholar

[12]

J. Földes and T. Phan, On higher integrability estimates for elliptic equations with singular coefficients, submitted, arXiv: 1804.03180. Google Scholar

[13]

R. L. FrankA. LaptevE. H. Lieb and R. Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys., 77 (2006), 309-316.  doi: 10.1007/s11005-006-0095-1.  Google Scholar

[14]

R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅱ, J. Spectr. Theory, 7 (2017), 633-658.  doi: 10.4171/JST/173.  Google Scholar

[15]

R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅲ, Trans. Amer. Math. Soc., 370 (2018), 219-240.  doi: 10.1090/tran/6936.  Google Scholar

[16]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note, AMS, 1997.  Google Scholar

[17]

L. T. HoangT. V. Nguyen and T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system, SIAM J. Math. Anal., 47 (2015), 2122-2177.  doi: 10.1137/140981447.  Google Scholar

[18]

E. JeongY. Kwon and S. Lee, Uniform Sobolev inequalities for second order non-elliptic differential operators, Adv. Math., 302 (2016), 323-350.  doi: 10.1016/j.aim.2016.07.016.  Google Scholar

[19]

B. Kang and H. Kim, On $L^p$-resolvent estimates for second-order elliptic equations in divergence form, Potential Anal., 50 (2019), 107-133.  doi: 10.1007/s11118-017-9675-1.  Google Scholar

[20]

C. E. KenigA. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329-347.  doi: 10.1215/S0012-7094-87-05518-9.  Google Scholar

[21]

D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2007), 489-506.  doi: 10.1137/050646913.  Google Scholar

[22]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.  doi: 10.1080/03605300600781626.  Google Scholar

[23]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[24]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.  Google Scholar

[25]

A. Maugeri, D. K. Palagachev and L. G. Softova., Elliptic and Parabolic Equations with Discontinuous Coefficients, Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[26]

N. G. Meyers, An $L^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1963), 189-206.   Google Scholar

[27]

T. Nguyen, Interior Calderón-Zygmund estimates for solutions to general parabolic equations of $p$-Laplacian type, Calc. Var. Partial Differential Equations, 56 (2017), Art. 173, 42 pp. doi: 10.1007/s00526-017-1265-y.  Google Scholar

[28]

T. Nguyen and T. Phan, Interior gradient estimates for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 59, 33 pp. doi: 10.1007/s00526-016-0996-5.  Google Scholar

[29]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[30]

T. Phan, G. Todorova and B. Yordanov, $L^p$-diffusion phenomena for dissipative wave equations, preprint, (2020). Google Scholar

[31]

T. Phan, Regularity estimates for BMO-weak solutions of quasilinear elliptic equations with inhomogeneous boundary conditions, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 8, 49 pp. doi: 10.1007/s00030-018-0501-2.  Google Scholar

[32]

T. Phan, Lorentz estimates for weak solutions of quasi-linear parabolic equations with singular divergence-free drifts, Canad. J. Math., 71 (2019), 937-982.  doi: 10.4153/CJM-2017-049-3.  Google Scholar

[33]

L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin., 19 (2003), 381-396.  doi: 10.1007/s10114-003-0264-4.  Google Scholar

[34]

W. Wei and Z. Zhang, $L^p$ resolvent estimates for constant coefficient elliptic systems on Lipschitz domains, J. Funct. Anal., 267 (2014), 3262-3293.  doi: 10.1016/j.jfa.2014.08.010.  Google Scholar

show all references

References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.  Google Scholar

[2]

L. Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J., 35 (1986), 225-233.  doi: 10.1512/iumj.1986.35.35013.  Google Scholar

[3]

S.-S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[4]

S.-S. Byun and L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal., 176 (2005), 271-301.  doi: 10.1007/s00205-005-0357-6.  Google Scholar

[5]

L. A. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168.   Google Scholar

[7]

J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal., 272 (2017), 2987-3018.  doi: 10.1016/j.jfa.2016.12.008.  Google Scholar

[8]

H. Dong and D. Kim, Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth, Comm. Partial Differential Equations, 36 (2011), 1750-1777.  doi: 10.1080/03605302.2011.571746.  Google Scholar

[9]

H. Dong and D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075-1098.  doi: 10.1137/100794614.  Google Scholar

[10]

H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.  doi: 10.1016/j.aim.2014.12.037.  Google Scholar

[11]

H. Dong and N. V. Krylov, Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, Calc. Var. Partial Differential Equations, 58 (2019), Art. 145, 32 pp. doi: 10.1007/s00526-019-1591-3.  Google Scholar

[12]

J. Földes and T. Phan, On higher integrability estimates for elliptic equations with singular coefficients, submitted, arXiv: 1804.03180. Google Scholar

[13]

R. L. FrankA. LaptevE. H. Lieb and R. Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys., 77 (2006), 309-316.  doi: 10.1007/s11005-006-0095-1.  Google Scholar

[14]

R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅱ, J. Spectr. Theory, 7 (2017), 633-658.  doi: 10.4171/JST/173.  Google Scholar

[15]

R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅲ, Trans. Amer. Math. Soc., 370 (2018), 219-240.  doi: 10.1090/tran/6936.  Google Scholar

[16]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note, AMS, 1997.  Google Scholar

[17]

L. T. HoangT. V. Nguyen and T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system, SIAM J. Math. Anal., 47 (2015), 2122-2177.  doi: 10.1137/140981447.  Google Scholar

[18]

E. JeongY. Kwon and S. Lee, Uniform Sobolev inequalities for second order non-elliptic differential operators, Adv. Math., 302 (2016), 323-350.  doi: 10.1016/j.aim.2016.07.016.  Google Scholar

[19]

B. Kang and H. Kim, On $L^p$-resolvent estimates for second-order elliptic equations in divergence form, Potential Anal., 50 (2019), 107-133.  doi: 10.1007/s11118-017-9675-1.  Google Scholar

[20]

C. E. KenigA. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329-347.  doi: 10.1215/S0012-7094-87-05518-9.  Google Scholar

[21]

D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2007), 489-506.  doi: 10.1137/050646913.  Google Scholar

[22]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.  doi: 10.1080/03605300600781626.  Google Scholar

[23]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[24]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.  Google Scholar

[25]

A. Maugeri, D. K. Palagachev and L. G. Softova., Elliptic and Parabolic Equations with Discontinuous Coefficients, Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[26]

N. G. Meyers, An $L^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1963), 189-206.   Google Scholar

[27]

T. Nguyen, Interior Calderón-Zygmund estimates for solutions to general parabolic equations of $p$-Laplacian type, Calc. Var. Partial Differential Equations, 56 (2017), Art. 173, 42 pp. doi: 10.1007/s00526-017-1265-y.  Google Scholar

[28]

T. Nguyen and T. Phan, Interior gradient estimates for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 59, 33 pp. doi: 10.1007/s00526-016-0996-5.  Google Scholar

[29]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[30]

T. Phan, G. Todorova and B. Yordanov, $L^p$-diffusion phenomena for dissipative wave equations, preprint, (2020). Google Scholar

[31]

T. Phan, Regularity estimates for BMO-weak solutions of quasilinear elliptic equations with inhomogeneous boundary conditions, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 8, 49 pp. doi: 10.1007/s00030-018-0501-2.  Google Scholar

[32]

T. Phan, Lorentz estimates for weak solutions of quasi-linear parabolic equations with singular divergence-free drifts, Canad. J. Math., 71 (2019), 937-982.  doi: 10.4153/CJM-2017-049-3.  Google Scholar

[33]

L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin., 19 (2003), 381-396.  doi: 10.1007/s10114-003-0264-4.  Google Scholar

[34]

W. Wei and Z. Zhang, $L^p$ resolvent estimates for constant coefficient elliptic systems on Lipschitz domains, J. Funct. Anal., 267 (2014), 3262-3293.  doi: 10.1016/j.jfa.2014.08.010.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[19]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.338

Article outline

[Back to Top]