doi: 10.3934/dcds.2020310

Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials

1. 

Department of Mathematics, University of Tennessee - Knoxville, 227 Ayress Hall, 1403 Circle Drive, Knoxville, TN 37996, USA

2. 

Integrated Science Program, Office of International Affairs, Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

* Corresponding author: phan@utk.edu

Received  March 2020 Revised  July 2020 Published  August 2020

Fund Project: T. Phan's research is partly supported by the Simons Foundation, grant # 354889. The third author would like to thank the Department of Mathematics at the University of Tennessee, Knoxville for its hospitality from which part of this work was done

This paper studies second order elliptic equations in both divergence and non-divergence forms with measurable complex valued principle coefficients and measurable complex valued potentials. The PDE operators can be considered as generalized Schrödinger operators. Under some sufficient conditions, we prove existence, uniqueness, and regularity estimates in Sobolev spaces for solutions to the equations. We particularly show that the non-zero imaginary parts of the potentials are the main mechanisms that control the solutions. Our results can be considered as limiting absorption principle for Schrödinger operators with measurable coefficients and they could be useful in applications. The approach is based on the perturbation technique that freezes the potentials. The results of the paper not only generalize known results but also provide a key ingredient for the study of $ L^p $-diffusion phenomena for dissipative wave equations.

Citation: Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020310
References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.  Google Scholar

[2]

L. Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J., 35 (1986), 225-233.  doi: 10.1512/iumj.1986.35.35013.  Google Scholar

[3]

S.-S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[4]

S.-S. Byun and L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal., 176 (2005), 271-301.  doi: 10.1007/s00205-005-0357-6.  Google Scholar

[5]

L. A. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168.   Google Scholar

[7]

J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal., 272 (2017), 2987-3018.  doi: 10.1016/j.jfa.2016.12.008.  Google Scholar

[8]

H. Dong and D. Kim, Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth, Comm. Partial Differential Equations, 36 (2011), 1750-1777.  doi: 10.1080/03605302.2011.571746.  Google Scholar

[9]

H. Dong and D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075-1098.  doi: 10.1137/100794614.  Google Scholar

[10]

H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.  doi: 10.1016/j.aim.2014.12.037.  Google Scholar

[11]

H. Dong and N. V. Krylov, Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, Calc. Var. Partial Differential Equations, 58 (2019), Art. 145, 32 pp. doi: 10.1007/s00526-019-1591-3.  Google Scholar

[12]

J. Földes and T. Phan, On higher integrability estimates for elliptic equations with singular coefficients, submitted, arXiv: 1804.03180. Google Scholar

[13]

R. L. FrankA. LaptevE. H. Lieb and R. Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys., 77 (2006), 309-316.  doi: 10.1007/s11005-006-0095-1.  Google Scholar

[14]

R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅱ, J. Spectr. Theory, 7 (2017), 633-658.  doi: 10.4171/JST/173.  Google Scholar

[15]

R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅲ, Trans. Amer. Math. Soc., 370 (2018), 219-240.  doi: 10.1090/tran/6936.  Google Scholar

[16]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note, AMS, 1997.  Google Scholar

[17]

L. T. HoangT. V. Nguyen and T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system, SIAM J. Math. Anal., 47 (2015), 2122-2177.  doi: 10.1137/140981447.  Google Scholar

[18]

E. JeongY. Kwon and S. Lee, Uniform Sobolev inequalities for second order non-elliptic differential operators, Adv. Math., 302 (2016), 323-350.  doi: 10.1016/j.aim.2016.07.016.  Google Scholar

[19]

B. Kang and H. Kim, On $L^p$-resolvent estimates for second-order elliptic equations in divergence form, Potential Anal., 50 (2019), 107-133.  doi: 10.1007/s11118-017-9675-1.  Google Scholar

[20]

C. E. KenigA. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329-347.  doi: 10.1215/S0012-7094-87-05518-9.  Google Scholar

[21]

D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2007), 489-506.  doi: 10.1137/050646913.  Google Scholar

[22]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.  doi: 10.1080/03605300600781626.  Google Scholar

[23]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[24]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.  Google Scholar

[25]

A. Maugeri, D. K. Palagachev and L. G. Softova., Elliptic and Parabolic Equations with Discontinuous Coefficients, Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[26]

N. G. Meyers, An $L^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1963), 189-206.   Google Scholar

[27]

T. Nguyen, Interior Calderón-Zygmund estimates for solutions to general parabolic equations of $p$-Laplacian type, Calc. Var. Partial Differential Equations, 56 (2017), Art. 173, 42 pp. doi: 10.1007/s00526-017-1265-y.  Google Scholar

[28]

T. Nguyen and T. Phan, Interior gradient estimates for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 59, 33 pp. doi: 10.1007/s00526-016-0996-5.  Google Scholar

[29]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[30]

T. Phan, G. Todorova and B. Yordanov, $L^p$-diffusion phenomena for dissipative wave equations, preprint, (2020). Google Scholar

[31]

T. Phan, Regularity estimates for BMO-weak solutions of quasilinear elliptic equations with inhomogeneous boundary conditions, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 8, 49 pp. doi: 10.1007/s00030-018-0501-2.  Google Scholar

[32]

T. Phan, Lorentz estimates for weak solutions of quasi-linear parabolic equations with singular divergence-free drifts, Canad. J. Math., 71 (2019), 937-982.  doi: 10.4153/CJM-2017-049-3.  Google Scholar

[33]

L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin., 19 (2003), 381-396.  doi: 10.1007/s10114-003-0264-4.  Google Scholar

[34]

W. Wei and Z. Zhang, $L^p$ resolvent estimates for constant coefficient elliptic systems on Lipschitz domains, J. Funct. Anal., 267 (2014), 3262-3293.  doi: 10.1016/j.jfa.2014.08.010.  Google Scholar

show all references

References:
[1]

S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147.  doi: 10.1002/cpa.3160150203.  Google Scholar

[2]

L. Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J., 35 (1986), 225-233.  doi: 10.1512/iumj.1986.35.35013.  Google Scholar

[3]

S.-S. Byun and L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math., 57 (2004), 1283-1310.  doi: 10.1002/cpa.20037.  Google Scholar

[4]

S.-S. Byun and L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal., 176 (2005), 271-301.  doi: 10.1007/s00205-005-0357-6.  Google Scholar

[5]

L. A. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.  Google Scholar

[6]

F. ChiarenzaM. Frasca and P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168.   Google Scholar

[7]

J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal., 272 (2017), 2987-3018.  doi: 10.1016/j.jfa.2016.12.008.  Google Scholar

[8]

H. Dong and D. Kim, Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth, Comm. Partial Differential Equations, 36 (2011), 1750-1777.  doi: 10.1080/03605302.2011.571746.  Google Scholar

[9]

H. Dong and D. Kim, Parabolic and elliptic systems in divergence form with variably partially BMO coefficients, SIAM J. Math. Anal., 43 (2011), 1075-1098.  doi: 10.1137/100794614.  Google Scholar

[10]

H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.  doi: 10.1016/j.aim.2014.12.037.  Google Scholar

[11]

H. Dong and N. V. Krylov, Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, Calc. Var. Partial Differential Equations, 58 (2019), Art. 145, 32 pp. doi: 10.1007/s00526-019-1591-3.  Google Scholar

[12]

J. Földes and T. Phan, On higher integrability estimates for elliptic equations with singular coefficients, submitted, arXiv: 1804.03180. Google Scholar

[13]

R. L. FrankA. LaptevE. H. Lieb and R. Seiringer, Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials, Lett. Math. Phys., 77 (2006), 309-316.  doi: 10.1007/s11005-006-0095-1.  Google Scholar

[14]

R. L. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅱ, J. Spectr. Theory, 7 (2017), 633-658.  doi: 10.4171/JST/173.  Google Scholar

[15]

R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials Ⅲ, Trans. Amer. Math. Soc., 370 (2018), 219-240.  doi: 10.1090/tran/6936.  Google Scholar

[16]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Note, AMS, 1997.  Google Scholar

[17]

L. T. HoangT. V. Nguyen and T. V. Phan, Gradient estimates and global existence of smooth solutions to a cross-diffusion system, SIAM J. Math. Anal., 47 (2015), 2122-2177.  doi: 10.1137/140981447.  Google Scholar

[18]

E. JeongY. Kwon and S. Lee, Uniform Sobolev inequalities for second order non-elliptic differential operators, Adv. Math., 302 (2016), 323-350.  doi: 10.1016/j.aim.2016.07.016.  Google Scholar

[19]

B. Kang and H. Kim, On $L^p$-resolvent estimates for second-order elliptic equations in divergence form, Potential Anal., 50 (2019), 107-133.  doi: 10.1007/s11118-017-9675-1.  Google Scholar

[20]

C. E. KenigA. Ruiz and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators, Duke Math. J., 55 (1987), 329-347.  doi: 10.1215/S0012-7094-87-05518-9.  Google Scholar

[21]

D. Kim and N. V. Krylov, Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others, SIAM J. Math. Anal., 39 (2007), 489-506.  doi: 10.1137/050646913.  Google Scholar

[22]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.  doi: 10.1080/03605300600781626.  Google Scholar

[23]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[24]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.  Google Scholar

[25]

A. Maugeri, D. K. Palagachev and L. G. Softova., Elliptic and Parabolic Equations with Discontinuous Coefficients, Mathematical Research, 109. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[26]

N. G. Meyers, An $L^{p}$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1963), 189-206.   Google Scholar

[27]

T. Nguyen, Interior Calderón-Zygmund estimates for solutions to general parabolic equations of $p$-Laplacian type, Calc. Var. Partial Differential Equations, 56 (2017), Art. 173, 42 pp. doi: 10.1007/s00526-017-1265-y.  Google Scholar

[28]

T. Nguyen and T. Phan, Interior gradient estimates for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 59, 33 pp. doi: 10.1007/s00526-016-0996-5.  Google Scholar

[29]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.   Google Scholar

[30]

T. Phan, G. Todorova and B. Yordanov, $L^p$-diffusion phenomena for dissipative wave equations, preprint, (2020). Google Scholar

[31]

T. Phan, Regularity estimates for BMO-weak solutions of quasilinear elliptic equations with inhomogeneous boundary conditions, NoDEA Nonlinear Differential Equations Appl., 25 (2018), Paper No. 8, 49 pp. doi: 10.1007/s00030-018-0501-2.  Google Scholar

[32]

T. Phan, Lorentz estimates for weak solutions of quasi-linear parabolic equations with singular divergence-free drifts, Canad. J. Math., 71 (2019), 937-982.  doi: 10.4153/CJM-2017-049-3.  Google Scholar

[33]

L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin., 19 (2003), 381-396.  doi: 10.1007/s10114-003-0264-4.  Google Scholar

[34]

W. Wei and Z. Zhang, $L^p$ resolvent estimates for constant coefficient elliptic systems on Lipschitz domains, J. Funct. Anal., 267 (2014), 3262-3293.  doi: 10.1016/j.jfa.2014.08.010.  Google Scholar

[1]

Marius Ionescu, Luke G. Rogers. Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-Zygmund operators. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2155-2175. doi: 10.3934/cpaa.2014.13.2155

[2]

Sun-Sig Byun, Yumi Cho, Shuang Liang. Calderón-Zygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3843-3855. doi: 10.3934/dcdsb.2020038

[3]

Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091

[4]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[5]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[6]

Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096

[7]

Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086

[8]

Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems & Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011

[9]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[10]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[11]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[12]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[13]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

[14]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[15]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[16]

Eduard Toon, Pedro Ubilla. Existence of positive solutions of Schrödinger equations with vanishing potentials. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5831-5843. doi: 10.3934/dcds.2020248

[17]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[18]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[19]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[20]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

2019 Impact Factor: 1.338

Article outline

[Back to Top]