doi: 10.3934/dcds.2020312

Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity

1. 

Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405 Orsay, France

2. 

School of Mathematics and Statistics, Lanzhou University, 370000 Lanzhou, China

* Corresponding author

Received  April 2020 Revised  July 2020 Published  August 2020

Fund Project: The work of both authors was partially supported by the ANR project ANuI (ANR-17-CE40-0035-02)

We prove global existence and modified scattering for the solutions of the Cauchy problem to the fractional Korteweg-de Vries equation with cubic nonlinearity for small, smooth and localized initial data.

Citation: Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020312
References:
[1]

J. Biello and J. K. Hunter, Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.  doi: 10.1002/cpa.20304.  Google Scholar

[2]

A. Bressan and K. T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.  doi: 10.1137/140957536.  Google Scholar

[3]

A. CastroD. Córdoba and F. Gancedo, Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[4]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[5]

M. Ehrnström and Y. Wang, Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.  doi: 10.1137/19M1237867.  Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[7]

S. GustafsonK. Nakanishi and T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.  doi: 10.1007/s00023-007-0336-6.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.  doi: 10.1155/S1073792899000203.  Google Scholar

[9]

J. K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.  doi: 10.1137/110849791.  Google Scholar

[10]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[11]

V. M. Hur and L. Tao, Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.  doi: 10.1088/0951-7715/27/12/2937.  Google Scholar

[12]

V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.  doi: 10.1016/j.aim.2017.07.006.  Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.  doi: 10.1007/s00222-014-0521-4.  Google Scholar

[14]

A. D. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.  doi: 10.1002/cpa.21654.  Google Scholar

[15]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[16]

C. KleinF. LinaresD. Pilod and J.-C. Saut, On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.  doi: 10.1111/sapm.12194.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[18]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[19]

L. MolinetD. Pilod and S. Vento, On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.  doi: 10.1016/j.anihpc.2017.12.004.  Google Scholar

[20]

J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar

[21]

R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar

show all references

References:
[1]

J. Biello and J. K. Hunter, Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.  doi: 10.1002/cpa.20304.  Google Scholar

[2]

A. Bressan and K. T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.  doi: 10.1137/140957536.  Google Scholar

[3]

A. CastroD. Córdoba and F. Gancedo, Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[4]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[5]

M. Ehrnström and Y. Wang, Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.  doi: 10.1137/19M1237867.  Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[7]

S. GustafsonK. Nakanishi and T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.  doi: 10.1007/s00023-007-0336-6.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.  doi: 10.1155/S1073792899000203.  Google Scholar

[9]

J. K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.  doi: 10.1137/110849791.  Google Scholar

[10]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[11]

V. M. Hur and L. Tao, Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.  doi: 10.1088/0951-7715/27/12/2937.  Google Scholar

[12]

V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.  doi: 10.1016/j.aim.2017.07.006.  Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.  doi: 10.1007/s00222-014-0521-4.  Google Scholar

[14]

A. D. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.  doi: 10.1002/cpa.21654.  Google Scholar

[15]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[16]

C. KleinF. LinaresD. Pilod and J.-C. Saut, On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.  doi: 10.1111/sapm.12194.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[18]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[19]

L. MolinetD. Pilod and S. Vento, On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.  doi: 10.1016/j.anihpc.2017.12.004.  Google Scholar

[20]

J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar

[21]

R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[9]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (156)
  • Cited by (0)

Other articles
by authors

[Back to Top]