• Previous Article
    Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data
  • DCDS Home
  • This Issue
  • Next Article
    Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations
doi: 10.3934/dcds.2020316

On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations

1. 

Texas A & M University, College Station, TX, USA, Institute for Information Transmission Problems, Moscow, Russia

2. 

University of Trieste, Trieste 34127, Italy

* Corresponding author: Scipio Cuccagna

Received  July 2019 Revised  November 2019 Published  August 2020

We extend to a specific class of systems of nonlinear Schrödinger equations (NLS) the theory of asymptotic stability of ground states already proved for the scalar NLS. Here the key point is the choice of an adequate system of modulation coordinates and the novelty, compared to the scalar NLS, is the fact that the group of symmetries of the system is non-commutative.

Citation: Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020316
References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[3]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.  doi: 10.1353/ajm.2011.0034.  Google Scholar

[4]

M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.  doi: 10.1215/00127094-1433394.  Google Scholar

[5]

S. Bhattarai, Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36 (2016), 1789-1811.  doi: 10.3934/dcds.2016.36.1789.  Google Scholar

[6]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817.  doi: 10.1007/s00220-006-0112-3.  Google Scholar

[7]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[8]

N. Boussaïd and A. Comech, Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models, Commun. Pure Appl. Anal., 17 (2018), 1331-1347.  doi: 10.3934/cpaa.2018065.  Google Scholar

[9]

N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019. doi: 10.1090/surv/244.  Google Scholar

[10]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, J. Funct. Anal., 277 (2019), 108289, 68 pp. doi: 10.1016/j.jfa.2019.108289.  Google Scholar

[11]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.   Google Scholar

[12]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98, Amer. Math. Soc., Providence, RI, 1995. doi: 10.1090/trans2/164/04.  Google Scholar

[13]

T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[14]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 157-196.  doi: 10.1016/j.anihpc.2015.11.001.  Google Scholar

[15]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145.  doi: 10.1002/cpa.1018.  Google Scholar

[16]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[17]

S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.   Google Scholar

[18]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[19]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential, J. Differential Equations, 256 (2014), 1395-1466.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[20]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.  doi: 10.3934/dcds.2015.35.3343.  Google Scholar

[21]

S. Cuccagna and M. Maeda, On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.  doi: 10.1007/s00332-016-9322-9.  Google Scholar

[22]

S. De Bièvre and S. Rota Nodari, Orbital stability via the energy-momentum method: The case of higher dimensional symmetry groups, Arch. Ration. Mech. Anal., 231 (2019), 233-284.  doi: 10.1007/s00205-018-1278-5.  Google Scholar

[23]

M. P. Do Carmo, Riemannian Geometry, Birkhäuser Boston, Inc., Boston, MA, 1992. Second edn.  Google Scholar

[24]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.  doi: 10.1007/BF02785129.  Google Scholar

[25]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[26]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.  doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[27]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851.  doi: 10.1007/s00205-011-0462-7.  Google Scholar

[28]

P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[29]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27 pp. doi: 10.1063/1.4731477.  Google Scholar

[30]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.  doi: 10.1081/PDE-200033754.  Google Scholar

[31]

C. Radford, Dirac equation revisited: Charge quantization as a consequence of the Dirac equation, Phys. Rev. D, 27 (1983), 1970-1971.  doi: 10.1103/PhysRevD.27.1970.  Google Scholar

[32] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.   Google Scholar
[33] W. Rossmann, Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, 5. Oxford University Press, Oxford, 2002.   Google Scholar
[34]

I. M. Sigal, Nonlinear wave and Schrödinger equations. Ⅰ. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.  doi: 10.1007/BF02096645.  Google Scholar

[35]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.  doi: 10.1007/s002220050303.  Google Scholar

[36]

W. A. Strauss, Nonlinear Wave Equations, vol. 73 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989. doi: 10.1090/cbms/073.  Google Scholar

[37]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[38]

M. I. Weinstein, Localized states and dynamics in the nonlinear Schrödinger / Gross–Pitaevskii equation, Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. 41–79. doi: 10.1007/978-3-319-19935-1_2.  Google Scholar

[39]

J. A. Wolf, Harmonic Analysis on Commutative Spaces, vol. 142 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/142.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[2]

D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.  doi: 10.1007/s00220-013-1684-3.  Google Scholar

[3]

D. Bambusi and S. Cuccagna, On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.  doi: 10.1353/ajm.2011.0034.  Google Scholar

[4]

M. Beceanu, New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.  doi: 10.1215/00127094-1433394.  Google Scholar

[5]

S. Bhattarai, Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36 (2016), 1789-1811.  doi: 10.3934/dcds.2016.36.1789.  Google Scholar

[6]

N. Boussaid, Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817.  doi: 10.1007/s00220-006-0112-3.  Google Scholar

[7]

N. Boussaid and S. Cuccagna, On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.  doi: 10.1080/03605302.2012.665973.  Google Scholar

[8]

N. Boussaïd and A. Comech, Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models, Commun. Pure Appl. Anal., 17 (2018), 1331-1347.  doi: 10.3934/cpaa.2018065.  Google Scholar

[9]

N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019. doi: 10.1090/surv/244.  Google Scholar

[10]

N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, J. Funct. Anal., 277 (2019), 108289, 68 pp. doi: 10.1016/j.jfa.2019.108289.  Google Scholar

[11]

V. S. Buslaev and G. S. Perel'man, Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.   Google Scholar

[12]

V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98, Amer. Math. Soc., Providence, RI, 1995. doi: 10.1090/trans2/164/04.  Google Scholar

[13]

T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[14]

A. ComechT. V. Phan and A. Stefanov, Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 157-196.  doi: 10.1016/j.anihpc.2015.11.001.  Google Scholar

[15]

S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145.  doi: 10.1002/cpa.1018.  Google Scholar

[16]

S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.  doi: 10.1007/s00220-011-1265-2.  Google Scholar

[17]

S. Cuccagna, On the Darboux and Birkhoff steps in the asymptotic stability of solitons, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.   Google Scholar

[18]

S. Cuccagna, On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.  doi: 10.1090/S0002-9947-2014-05770-X.  Google Scholar

[19]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-trapping potential, J. Differential Equations, 256 (2014), 1395-1466.  doi: 10.1016/j.jde.2013.11.002.  Google Scholar

[20]

S. Cuccagna and M. Maeda, On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.  doi: 10.3934/dcds.2015.35.3343.  Google Scholar

[21]

S. Cuccagna and M. Maeda, On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.  doi: 10.1007/s00332-016-9322-9.  Google Scholar

[22]

S. De Bièvre and S. Rota Nodari, Orbital stability via the energy-momentum method: The case of higher dimensional symmetry groups, Arch. Ration. Mech. Anal., 231 (2019), 233-284.  doi: 10.1007/s00205-018-1278-5.  Google Scholar

[23]

M. P. Do Carmo, Riemannian Geometry, Birkhäuser Boston, Inc., Boston, MA, 1992. Second edn.  Google Scholar

[24]

A. Galindo, A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.  doi: 10.1007/BF02785129.  Google Scholar

[25]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[26]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.  doi: 10.1215/S0012-7094-79-04631-3.  Google Scholar

[27]

K. Nakanishi and W. Schlag, Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851.  doi: 10.1007/s00205-011-0462-7.  Google Scholar

[28]

P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[29]

D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27 pp. doi: 10.1063/1.4731477.  Google Scholar

[30]

G. Perelman, Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.  doi: 10.1081/PDE-200033754.  Google Scholar

[31]

C. Radford, Dirac equation revisited: Charge quantization as a consequence of the Dirac equation, Phys. Rev. D, 27 (1983), 1970-1971.  doi: 10.1103/PhysRevD.27.1970.  Google Scholar

[32] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.   Google Scholar
[33] W. Rossmann, Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, 5. Oxford University Press, Oxford, 2002.   Google Scholar
[34]

I. M. Sigal, Nonlinear wave and Schrödinger equations. Ⅰ. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.  doi: 10.1007/BF02096645.  Google Scholar

[35]

A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.  doi: 10.1007/s002220050303.  Google Scholar

[36]

W. A. Strauss, Nonlinear Wave Equations, vol. 73 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989. doi: 10.1090/cbms/073.  Google Scholar

[37]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[38]

M. I. Weinstein, Localized states and dynamics in the nonlinear Schrödinger / Gross–Pitaevskii equation, Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. 41–79. doi: 10.1007/978-3-319-19935-1_2.  Google Scholar

[39]

J. A. Wolf, Harmonic Analysis on Commutative Spaces, vol. 142 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007. doi: 10.1090/surv/142.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (139)
  • Cited by (0)

Other articles
by authors

[Back to Top]