• Previous Article
    Strichartz estimates and local regularity for the elastic wave equation with singular potentials
  • DCDS Home
  • This Issue
  • Next Article
    Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators
doi: 10.3934/dcds.2020317

On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property

1. 

National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic

2. 

National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic, – and –, AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland

3. 

School of Mathematical Science, Fudan University, Shanghai 200433, China

* Corresponding author: oprocha@agh.edu.pl

Received  November 2019 Revised  May 2020 Published  August 2020

We study the properties of $ \Phi $-irregular sets (sets of points for which the Birkhoff average diverges) in dynamical systems with the shadowing property. We estimate the topological entropy of $ \Phi $-irregular set in terms of entropy on chain recurrent classes and prove that $ \Phi $-irregular sets of full entropy are typical. We also consider $ \Phi $-level sets (sets of points whose Birkhoff average is in a specified interval), relating entropy they carry with the entropy of some ergodic measures. Finally, we study the problem of large deviations considering the level sets with respect to reference measures.

Citation: Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020317
References:
[1]

L. Barreira and J. Schmeling, Sets of non-typical points have full topological measure and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.  doi: 10.1007/BF02773211.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.  doi: 10.2307/1995452.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125–136. doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

M. Brin and A. Katok, On local entropy, Geom. Dyn. Springer Lecture Notes, 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[6]

L. Chen, Linking and the shadowing property for piecewise monotone maps, Proc. Amer. Math. Soc., 113 (1991), 251-263.  doi: 10.1090/S0002-9939-1991-1079695-2.  Google Scholar

[7]

E. M. CovenI. Kan and J. A. Yorke, Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc., 308 (1988), 227-241.  doi: 10.1090/S0002-9947-1988-0946440-2.  Google Scholar

[8] R. M. Dudley, Real Analysis and Probability, Revised reprint of the 1989 original. Cambridge Studies in Adv. Math, 74. Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar
[9]

Y. Dong, P. Oprocha and X. Tian, On the irregular points for systems with the shadowing property, Ergodic Theory Dynam. Systems, 38 (2018), 2108–2131. doi: 10.1017/etds.2016.126.  Google Scholar

[10]

C. ErcaiT. Küpper and S. Lin, Topological entropy for divergence points, Ergod. Th. Dyn. Sys., 25 (2005), 1173-1208.  doi: 10.1017/S0143385704000872.  Google Scholar

[11]

A.-H. FanD.-J. Feng and J. Wu, Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[12]

C. Good and J. Meddaugh, Shifts of finite type as fundamental objects in the theory of shadowing, Invent. Math., 220 (2020), 715–736. arXiv: 1702.05170. doi: 10.1007/s00222-019-00936-8.  Google Scholar

[13]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Diff. Eq., 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[14]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-174.   Google Scholar

[15]

J. Li and P. Oprocha, Properties of invariant measures in dynamical systems with the shadowing property, Erg. Theory and Dyn. Sys., 38 (2018), 2257-2294.  doi: 10.1017/etds.2016.125.  Google Scholar

[16]

J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Sys., 34 (2014), 635-645.  doi: 10.3934/dcds.2014.34.635.  Google Scholar

[17]

T. K. S. Moothathu, Implications of pseudo-orbit tracing property of continuous maps on compacta, Top. Appl., 158 (2011), 2232-2239.  doi: 10.1016/j.topol.2011.07.016.  Google Scholar

[18]

T. K. S. Moothathu and P. Oprocha, Shadowing, entropy and minimal subsystems, Monatsh. Math., 172 (2013), 357-378.  doi: 10.1007/s00605-013-0504-3.  Google Scholar

[19]

L. Olsen, Divergence points of deformed empirical measures, Math. Res. Lett., 9 (2002), 701-713.  doi: 10.4310/MRL.2002.v9.n6.a1.  Google Scholar

[20]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003), 1591-1649.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[21]

L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc., 67 (2003), 103-122.  doi: 10.1112/S0024610702003630.  Google Scholar

[22]

D. Ruelle, Historic behaviour in smooth dynamical systems, Global Analysis of Dynamical Systems, 63–66, Inst. Phys., Bristol, 2001.  Google Scholar

[23]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.  doi: 10.1007/BF01404606.  Google Scholar

[24]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Erg. Theory Dynam. Sys., 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[25]

X. Tian, Topological pressure for the completely irregular set of Birkhoff averages, Discrete Contin. Dyn. Sys., 37 (2017), 2745-2763.  doi: 10.3934/dcds.2017118.  Google Scholar

[26]

D. J. Thompson, Irregular sets, the $\beta$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[27]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[28]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543.  doi: 10.2307/2001318.  Google Scholar

show all references

References:
[1]

L. Barreira and J. Schmeling, Sets of non-typical points have full topological measure and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.  doi: 10.1007/BF02773211.  Google Scholar

[2]

R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc., 164 (1972), 323-331.  doi: 10.1090/S0002-9947-1972-0285689-X.  Google Scholar

[3]

R. Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.  doi: 10.2307/1995452.  Google Scholar

[4]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125–136. doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[5]

M. Brin and A. Katok, On local entropy, Geom. Dyn. Springer Lecture Notes, 1007 (1983), 30-38.  doi: 10.1007/BFb0061408.  Google Scholar

[6]

L. Chen, Linking and the shadowing property for piecewise monotone maps, Proc. Amer. Math. Soc., 113 (1991), 251-263.  doi: 10.1090/S0002-9939-1991-1079695-2.  Google Scholar

[7]

E. M. CovenI. Kan and J. A. Yorke, Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc., 308 (1988), 227-241.  doi: 10.1090/S0002-9947-1988-0946440-2.  Google Scholar

[8] R. M. Dudley, Real Analysis and Probability, Revised reprint of the 1989 original. Cambridge Studies in Adv. Math, 74. Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar
[9]

Y. Dong, P. Oprocha and X. Tian, On the irregular points for systems with the shadowing property, Ergodic Theory Dynam. Systems, 38 (2018), 2108–2131. doi: 10.1017/etds.2016.126.  Google Scholar

[10]

C. ErcaiT. Küpper and S. Lin, Topological entropy for divergence points, Ergod. Th. Dyn. Sys., 25 (2005), 1173-1208.  doi: 10.1017/S0143385704000872.  Google Scholar

[11]

A.-H. FanD.-J. Feng and J. Wu, Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[12]

C. Good and J. Meddaugh, Shifts of finite type as fundamental objects in the theory of shadowing, Invent. Math., 220 (2020), 715–736. arXiv: 1702.05170. doi: 10.1007/s00222-019-00936-8.  Google Scholar

[13]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Diff. Eq., 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[14]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-174.   Google Scholar

[15]

J. Li and P. Oprocha, Properties of invariant measures in dynamical systems with the shadowing property, Erg. Theory and Dyn. Sys., 38 (2018), 2257-2294.  doi: 10.1017/etds.2016.125.  Google Scholar

[16]

J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specification property, Discrete Contin. Dyn. Sys., 34 (2014), 635-645.  doi: 10.3934/dcds.2014.34.635.  Google Scholar

[17]

T. K. S. Moothathu, Implications of pseudo-orbit tracing property of continuous maps on compacta, Top. Appl., 158 (2011), 2232-2239.  doi: 10.1016/j.topol.2011.07.016.  Google Scholar

[18]

T. K. S. Moothathu and P. Oprocha, Shadowing, entropy and minimal subsystems, Monatsh. Math., 172 (2013), 357-378.  doi: 10.1007/s00605-013-0504-3.  Google Scholar

[19]

L. Olsen, Divergence points of deformed empirical measures, Math. Res. Lett., 9 (2002), 701-713.  doi: 10.4310/MRL.2002.v9.n6.a1.  Google Scholar

[20]

L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003), 1591-1649.  doi: 10.1016/j.matpur.2003.09.007.  Google Scholar

[21]

L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc., 67 (2003), 103-122.  doi: 10.1112/S0024610702003630.  Google Scholar

[22]

D. Ruelle, Historic behaviour in smooth dynamical systems, Global Analysis of Dynamical Systems, 63–66, Inst. Phys., Bristol, 2001.  Google Scholar

[23]

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.  doi: 10.1007/BF01404606.  Google Scholar

[24]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Erg. Theory Dynam. Sys., 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[25]

X. Tian, Topological pressure for the completely irregular set of Birkhoff averages, Discrete Contin. Dyn. Sys., 37 (2017), 2745-2763.  doi: 10.3934/dcds.2017118.  Google Scholar

[26]

D. J. Thompson, Irregular sets, the $\beta$-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.  doi: 10.1090/S0002-9947-2012-05540-1.  Google Scholar

[27]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[28]

L.-S. Young, Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543.  doi: 10.2307/2001318.  Google Scholar

[1]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[4]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[16]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[17]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[19]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[20]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

2019 Impact Factor: 1.338

Article outline

[Back to Top]