March  2021, 41(3): 1297-1318. doi: 10.3934/dcds.2020318

Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, 21941-909, Brazil

2. 

Departamento de Matemática, Universidade de Brasília, Brasília - DF, 70910-900, Brazil

* Corresponding author: Juliana Fernandes

Received  December 2019 Revised  May 2020 Published  August 2020

Fund Project: The first author was partially supported by FAPERJ. The second author was partially supported by FAPDF, CAPES, and CNPq grant 308378/2017 -2

The present paper is on the existence and behaviour of solutions for a class of semilinear parabolic equations, defined on a bounded smooth domain and assuming a nonlinearity asymptotically linear at infinity. The behavior of the solutions when the initial data varies in the phase space is analyzed. Global solutions are obtained, which may be bounded or blow-up in infinite time (grow-up). The main tools are the comparison principle and variational methods. In particular, the Nehari manifold is used to separate the phase space into regions of initial data where uniform boundedness or grow-up behavior of the semiflow may occur. Additionally, some attention is paid to initial data at high energy level.

Citation: Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. Partial Differential Equations, 25 (2000), 1-37.  doi: 10.1080/03605300008821506.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractor in Evolutionary Equations, Studies in Mathemathics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[4]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

N. Ben-Gal, Grow-Up Solutions and Heteroclinics to Infinity for Scalar Parabolic PDEs, Ph.D thesis, Brown University, 2010.  Google Scholar

[6]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007 doi: 10.1201/9781420011401.  Google Scholar

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[8]

G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Accad. Sc. Lett. Inst. Lombardo, 112 (1978), 332-336.   Google Scholar

[9]

M. ChenX.-Y. Chen and J. K. Hale, Structural stability for time periodic one-dimensional parabolic equations, J. Differential Equations, 96 (1992), 355-418.  doi: 10.1016/0022-0396(92)90159-K.  Google Scholar

[10]

V. V. Chepyzhov and A. Y. Goritskiĭ, Unbounded attractors of evolution equations, in Properties of Global Attractors of Partial Differential Equations, , Adv. Soviet Math., 10, Amer. Math. Soc., Providence, RI, 1992, 85–128.  Google Scholar

[11]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Differential Equations, 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.  Google Scholar

[12]

D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.  doi: 10.1016/0362-546X(94)90135-X.  Google Scholar

[13]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[14]

F. DicksteinN. MizoguchiP. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var. Partial Differential Equations, 42 (2011), 547-562.  doi: 10.1007/s00526-011-0397-8.  Google Scholar

[15]

F. Gazolla and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990.   Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences, 224, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[17]

M. Grossi, A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differential Equations, 5 (2000), 193-121.   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[19]

H. Hofer, The topological degree at a critical point of mountain-pass type, in Nonlinear Functional Analysis and its Applications, Proc. Sympos. Pure Math., 45, Amer. Math. Soc., Providence, RI, 1986,501–509.  Google Scholar

[20]

H. Hoshino and Y. Yamada, Solvability and soothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-492.   Google Scholar

[21] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511569418.  Google Scholar
[22]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J. Pimentel and C. Rocha, A permutation related to non-compact global attractors for slowly non-dissipative systems, J. Dynam. Differential Equations, 28 (2016), 1-28.  doi: 10.1007/s10884-014-9414-x.  Google Scholar

[26]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195-203.   Google Scholar

[27]

P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math., 29 (2003), 757-799.   Google Scholar

[28]

C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Chapman & Hall, New York; International Thomson Publishing, London, 1997. doi: 10.1007/978-1-4615-6035-7.  Google Scholar

[29]

G. I. StegemanD. N. Christodoulides and M. Segev, Optical spatial solitons: Historical Perspectives, IEEE J. Selected Topics Quantum Electronics, 6 (2000), 1419-1427.  doi: 10.1109/2944.902197.  Google Scholar

[30]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193.   Google Scholar

[31]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. Partial Differential Equations, 25 (2000), 1-37.  doi: 10.1080/03605300008821506.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractor in Evolutionary Equations, Studies in Mathemathics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[4]

P. BartoloV. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.  doi: 10.1016/0362-546X(83)90115-3.  Google Scholar

[5]

N. Ben-Gal, Grow-Up Solutions and Heteroclinics to Infinity for Scalar Parabolic PDEs, Ph.D thesis, Brown University, 2010.  Google Scholar

[6]

A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007 doi: 10.1201/9781420011401.  Google Scholar

[7]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[8]

G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Accad. Sc. Lett. Inst. Lombardo, 112 (1978), 332-336.   Google Scholar

[9]

M. ChenX.-Y. Chen and J. K. Hale, Structural stability for time periodic one-dimensional parabolic equations, J. Differential Equations, 96 (1992), 355-418.  doi: 10.1016/0022-0396(92)90159-K.  Google Scholar

[10]

V. V. Chepyzhov and A. Y. Goritskiĭ, Unbounded attractors of evolution equations, in Properties of Global Attractors of Partial Differential Equations, , Adv. Soviet Math., 10, Amer. Math. Soc., Providence, RI, 1992, 85–128.  Google Scholar

[11]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Differential Equations, 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.  Google Scholar

[12]

D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.  doi: 10.1016/0362-546X(94)90135-X.  Google Scholar

[13]

E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.  doi: 10.1016/0022-0396(88)90021-6.  Google Scholar

[14]

F. DicksteinN. MizoguchiP. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var. Partial Differential Equations, 42 (2011), 547-562.  doi: 10.1007/s00526-011-0397-8.  Google Scholar

[15]

F. Gazolla and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990.   Google Scholar

[16]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences, 224, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[17]

M. Grossi, A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differential Equations, 5 (2000), 193-121.   Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.  Google Scholar

[19]

H. Hofer, The topological degree at a critical point of mountain-pass type, in Nonlinear Functional Analysis and its Applications, Proc. Sympos. Pure Math., 45, Amer. Math. Soc., Providence, RI, 1986,501–509.  Google Scholar

[20]

H. Hoshino and Y. Yamada, Solvability and soothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-492.   Google Scholar

[21] O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511569418.  Google Scholar
[22]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

J. Pimentel and C. Rocha, A permutation related to non-compact global attractors for slowly non-dissipative systems, J. Dynam. Differential Equations, 28 (2016), 1-28.  doi: 10.1007/s10884-014-9414-x.  Google Scholar

[26]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195-203.   Google Scholar

[27]

P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math., 29 (2003), 757-799.   Google Scholar

[28]

C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Chapman & Hall, New York; International Thomson Publishing, London, 1997. doi: 10.1007/978-1-4615-6035-7.  Google Scholar

[29]

G. I. StegemanD. N. Christodoulides and M. Segev, Optical spatial solitons: Historical Perspectives, IEEE J. Selected Topics Quantum Electronics, 6 (2000), 1419-1427.  doi: 10.1109/2944.902197.  Google Scholar

[30]

M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193.   Google Scholar

[31]

F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[5]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[6]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[9]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[10]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[11]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[12]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[13]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[16]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[17]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[18]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[19]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[20]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]