Advanced Search
Article Contents
Article Contents

Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium

  • * Corresponding author: Juliana Fernandes

    * Corresponding author: Juliana Fernandes 

The first author was partially supported by FAPERJ. The second author was partially supported by FAPDF, CAPES, and CNPq grant 308378/2017 -2

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The present paper is on the existence and behaviour of solutions for a class of semilinear parabolic equations, defined on a bounded smooth domain and assuming a nonlinearity asymptotically linear at infinity. The behavior of the solutions when the initial data varies in the phase space is analyzed. Global solutions are obtained, which may be bounded or blow-up in infinite time (grow-up). The main tools are the comparison principle and variational methods. In particular, the Nehari manifold is used to separate the phase space into regions of initial data where uniform boundedness or grow-up behavior of the semiflow may occur. Additionally, some attention is paid to initial data at high energy level.

    Mathematics Subject Classification: Primary: 35K58, 35A01; Secondary: 35B44.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.
    [2] J. M. ArrietaA. N. Carvalho and A. Rodríguez-Bernal, Attractors for parabolic problems with nonlinear boundary conditions. Uniform bounds, Comm. Partial Differential Equations, 25 (2000), 1-37.  doi: 10.1080/03605300008821506.
    [3] A. V. Babin and M. I. Vishik, Attractor in Evolutionary Equations, Studies in Mathemathics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.
    [4] P. BartoloV. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal., 7 (1983), 981-1012.  doi: 10.1016/0362-546X(83)90115-3.
    [5] N. Ben-Gal, Grow-Up Solutions and Heteroclinics to Infinity for Scalar Parabolic PDEs, Ph.D thesis, Brown University, 2010.
    [6] A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007 doi: 10.1201/9781420011401.
    [7] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.
    [8] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Accad. Sc. Lett. Inst. Lombardo, 112 (1978), 332-336. 
    [9] M. ChenX.-Y. Chen and J. K. Hale, Structural stability for time periodic one-dimensional parabolic equations, J. Differential Equations, 96 (1992), 355-418.  doi: 10.1016/0022-0396(92)90159-K.
    [10] V. V. Chepyzhov and A. Y. Goritskiĭ, Unbounded attractors of evolution equations, in Properties of Global Attractors of Partial Differential Equations, , Adv. Soviet Math., 10, Amer. Math. Soc., Providence, RI, 1992, 85–128.
    [11] M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Differential Equations, 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.
    [12] D. G. Costa and C. A. Magalhães, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23 (1994), 1401-1412.  doi: 10.1016/0362-546X(94)90135-X.
    [13] E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations, 74 (1988), 120-156.  doi: 10.1016/0022-0396(88)90021-6.
    [14] F. DicksteinN. MizoguchiP. Souplet and F. Weissler, Transversality of stable and Nehari manifolds for a semilinear heat equation, Calc. Var. Partial Differential Equations, 42 (2011), 547-562.  doi: 10.1007/s00526-011-0397-8.
    [15] F. Gazolla and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18 (2005), 961-990. 
    [16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Fundamental Principles of Mathematical Sciences, 224, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.
    [17] M. Grossi, A uniqueness result for a semilinear elliptic equation in symmetric domains, Adv. Differential Equations, 5 (2000), 193-121. 
    [18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.
    [19] H. Hofer, The topological degree at a critical point of mountain-pass type, in Nonlinear Functional Analysis and its Applications, Proc. Sympos. Pure Math., 45, Amer. Math. Soc., Providence, RI, 1986,501–509.
    [20] H. Hoshino and Y. Yamada, Solvability and soothing effect for semilinear parabolic equations, Funkcial. Ekvac., 34 (1991), 475-492. 
    [21] O. LadyzhenskayaAttractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.  doi: 10.1017/CBO9780511569418.
    [22] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.
    [23] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.
    [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [25] J. Pimentel and C. Rocha, A permutation related to non-compact global attractors for slowly non-dissipative systems, J. Dynam. Differential Equations, 28 (2016), 1-28.  doi: 10.1007/s10884-014-9414-x.
    [26] P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195-203. 
    [27] P. Quittner, Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math., 29 (2003), 757-799. 
    [28] C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Chapman & Hall, New York; International Thomson Publishing, London, 1997. doi: 10.1007/978-1-4615-6035-7.
    [29] G. I. StegemanD. N. Christodoulides and M. Segev, Optical spatial solitons: Historical Perspectives, IEEE J. Selected Topics Quantum Electronics, 6 (2000), 1419-1427.  doi: 10.1109/2944.902197.
    [30] M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193. 
    [31] F. B. Weissler, Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.  doi: 10.1016/0022-1236(79)90040-5.
  • 加载中

Article Metrics

HTML views(1764) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint