American Institute of Mathematical Sciences

March  2021, 41(3): 1319-1346. doi: 10.3934/dcds.2020319

Entropy production in random billiards

 1 Department of Mathematics and Statistics, Mount Holyoke College, 50 College St, South Hadley, MA 01075, USA 2 Department of Mathematics and Statistics, Washington University, Campus Box 1146, St. Louis, MO 63130, USA

* Corresponding author: Timothy Chumley

Received  February 2020 Revised  July 2020 Published  August 2020

We consider a class of random mechanical systems called random billiards to study the problem of quantifying the irreversibility of nonequilibrium macroscopic systems. In a random billiard model, a point particle evolves by free motion through the interior of a spatial domain, and reflects according to a reflection operator, specified in the model by a Markov transition kernel, upon collision with the boundary of the domain. We derive a formula for entropy production rate that applies to a general class of random billiard systems. This formula establishes a relation between the purely mathematical concept of entropy production rate and textbook thermodynamic entropy, recovering in particular Clausius' formulation of the second law of thermodynamics. We also study an explicit class of examples whose reflection operator, referred to as the Maxwell-Smoluchowski thermostat, models systems with boundary thermostats kept at possibly different temperatures. We prove that, under certain mild regularity conditions, the class of models are uniformly ergodic Markov chains and derive formulas for the stationary distribution and entropy production rate in terms of geometric and thermodynamic parameters.

Citation: Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319
References:

show all references

References:
The random billiard map is the composition of two maps: the geodesic translation $\mathcal{T}$ and scattering determined by the reflection operator $P$. The distribution of the velocity $V$ after reflection is given by $\mathcal{B}_x = P_{\mathcal{T}(x)}$
The two-masses system
Configuration manifold for the two-masses random billiard system
Depiction of some of the vectors appearing in the proof of Proposition 5
A particle of mass $m$ bounces back and forth between two plates kept at temperatures $T_1$ and $T_2$. For the reflection operator we use the Maxwell-Smoluchowski model with probabilities of diffuse reflection $\alpha_1$ and $\alpha_2$
Entropy production for a billiard system whose billiard domain is formed by the union of two discs of equal radius $r$ whose centers are $a$ units apart. The ratio parameter is $a/2r$ and the number above each graph is the temperature difference $T_2-T_1$. The vertical bars indicate 95% confidence intervals
A simple random billiard heat engine. The difference in temperatures allows the system to do work against an external force
When $F = 0$ the conveyor belt steadily drifts counterclockwise when $T_h-T_c>0$, and clockwise when the temperatures are reversed. The temperatures for the top $4$ graphs are $T_c = 1$ and $T_h = 1, 10, 25, 50$, and $T_c, T_h$ are reversed for the $3$ lower graphs. The inset is the same as the graph for $T_c = T_h = 1$ but in a finer scale so that its stochastic character is more clearly apparent
Efficiency of the billiard heat engine as a function of the force acting on the sliding wall
 [1] Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 [2] Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 [3] Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 [4] Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 [5] Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 [6] Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103 [7] Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 [8] Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 [9] Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017 [10] Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 [11] Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002 [12] Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011 [13] Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 [14] Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 [15] Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 [16] Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 [17] Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 [18] Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 [19] Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377 [20] Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

2019 Impact Factor: 1.338

Tools

Article outline

Figures and Tables