doi: 10.3934/dcds.2020320

Gromov-Hausdorff stability for group actions

1. 

Department of Mathematics, College of Science, Yanbian University, No. 977, Gongyuan Road, Yanji City 133002, Jilin Province, China

2. 

Department of Mathematics, Chungnam National University, Daejeon 305-764, Korea

3. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530 21945-970, Rio de Janeiro, Brazil

Received  February 2020 Revised  July 2020 Published  August 2020

Fund Project: KL and MD were supported by the NRF grant funded by the Korea government (MSIT)(NRF-2018R1A2B3001457). CAM was partially supported by the NRF Brain Pool Grant funded by the Korea government and CNPq from Brazil

We will extend the topological Gromov-Hausdorff stability [2] from homeomorphisms to finitely generated actions. We prove that if an action is expansive and has the shadowing property, then it is topologically GH-stable. From this we derive examples of topologically GH-stable actions of the discrete Heisenberg group on tori. Finally, we prove that the topological GH-stability is an invariant under isometric conjugacy.

Citation: Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020320
References:
[1]

D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR, 145 (1962), 707-709.   Google Scholar

[2]

A. Arbieto and C. A. Morales Rojas, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.  doi: 10.3934/dcds.2017151.  Google Scholar

[3]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[4]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.  Google Scholar

[5]

M. Dong, Group Actions from Measure Theoretical Viewpoint, PhD. thesis, Chungnam National University in Daejeon, 2018. Google Scholar

[6]

K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547.  doi: 10.1007/BF01389241.  Google Scholar

[7]

M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.   Google Scholar

[8]

A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.  doi: 10.1080/00207179208934253.  Google Scholar

[9]

A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.  doi: 10.1080/14689367.2014.902037.  Google Scholar

[10]

S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some Abelian groups, Fund. Math., 179 (2003), 83-96.  doi: 10.4064/fm179-1-7.  Google Scholar

[11]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244. doi: 10.1007/BFb0101795.  Google Scholar

show all references

References:
[1]

D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR, 145 (1962), 707-709.   Google Scholar

[2]

A. Arbieto and C. A. Morales Rojas, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.  doi: 10.3934/dcds.2017151.  Google Scholar

[3]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[4]

N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.  Google Scholar

[5]

M. Dong, Group Actions from Measure Theoretical Viewpoint, PhD. thesis, Chungnam National University in Daejeon, 2018. Google Scholar

[6]

K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547.  doi: 10.1007/BF01389241.  Google Scholar

[7]

M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.   Google Scholar

[8]

A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.  doi: 10.1080/00207179208934253.  Google Scholar

[9]

A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.  doi: 10.1080/14689367.2014.902037.  Google Scholar

[10]

S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some Abelian groups, Fund. Math., 179 (2003), 83-96.  doi: 10.4064/fm179-1-7.  Google Scholar

[11]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244. doi: 10.1007/BFb0101795.  Google Scholar

[1]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[4]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[5]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[8]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[9]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[10]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[11]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.338

Article outline

[Back to Top]