doi: 10.3934/dcds.2020322

Global large solutions and optimal time-decay estimates to the Korteweg system

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China

2. 

School of Mathematics, South China University of Technology, Guangzhou, 510640, China

Received  December 2019 Revised  May 2020 Published  September 2020

We prove the global solutions to the Korteweg system without smallness condition imposed on the vertical component of the incompressible part of the velocity. The weighted Chemin-Lerner-norm technique which is well-known for the incompressible Navier-Stokes equations is introduced to derive the a priori estimates. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument (independent of spectral analysis). In contrast to the compressible Navier-Stokes system, the time-decay estimates are more accurate owing to smoothing effect from the Korteweg tensor.

Citation: Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020322
References:
[1]

P. Antonelli, L. E. Hientzsch and S. Spirito, Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior, arXiv: 2001.01652. Google Scholar

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[3]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[4]

P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of the quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 255 (2017), 1161-1199.  doi: 10.1007/s00205-017-1124-1.  Google Scholar

[5]

P. Antonelli and S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110-124.  doi: 10.1016/j.na.2019.03.020.  Google Scholar

[6]

C. Audiard and B. Haspot, Global well-posedness of the Euler Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201-247.  doi: 10.1007/s00220-017-2843-8.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations., Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

D. BreschB. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Part. Diffe. Equ., 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[9]

D. BreschM. Gisclon and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975-1025.  doi: 10.1007/s00205-019-01373-w.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

F. Charve, R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, arXiv: 1805.01764. Google Scholar

[12]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[13]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314–328. doi: 10.1006/jdeq.1995.1131.  Google Scholar

[14]

Q. Chen, C. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173–1224. doi: 10.1002/cpa.20325.  Google Scholar

[15]

Z.-M. Chen and X. Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Art. 26, 23 pp. doi: 10.1007/s00021-019-0428-3.  Google Scholar

[16]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. doi: 10.1007/s002220000078.  Google Scholar

[17]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[18]

R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[19]

R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.  Google Scholar

[20]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[21]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Part. Diffe. Equ., 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[22]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[23]

E. Feireisl, Dynamics of Viscous Compressible Fluids., Oxford Univ. Press, Oxford, 2004.  Google Scholar

[24]

E. Feireisl and A. Novotný, H. Petzeltová, On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358–392. doi: 10.1007/PL00000976.  Google Scholar

[25]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97–108. doi: 10.1006/jdeq.2001.4137.  Google Scholar

[26]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611–631. doi: 10.1512/iumj.2011.60.4406.  Google Scholar

[27]

A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillarity of ideal gas, Contemporary physics, 58 (2017), 70-90.  doi: 10.1080/00107514.2016.1256123.  Google Scholar

[28]

G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., 225 (2010), 1248-1284.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[29]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[30]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[31]

B. Haspot, Existence of global strong solution for Korteweg system with large infinite energy initial data, J. Math. Anal. Appl., 438 (2016), 395-443.  doi: 10.1016/j.jmaa.2016.01.047.  Google Scholar

[32]

B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$, Math. Ann., 367 (2017), 667-700.  doi: 10.1007/s00208-016-1391-4.  Google Scholar

[33]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar

[34]

L. HeJ. Huang and C. Wang, Global stability of large solutions to the 3D compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 234 (2019), 1167-1222.  doi: 10.1007/s00205-019-01410-8.  Google Scholar

[35]

M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Internat. J. Engrg. Sci., 48 (2010), 1313-1324.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[36]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.  doi: 10.1137/090776068.  Google Scholar

[37]

M. Kawashita, On global solution of Cauchy problems for compressible Navier-Stokes equation, Nonlinear Anal., 48 (2002), 1087-1105.  doi: 10.1016/S0362-546X(00)00238-8.  Google Scholar

[38]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér., 6 (1901), 1-24.   Google Scholar

[39]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[40]

H.-K. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in ${\mathbb R}^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[41]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[42]

M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, arXiv: 1908.07224. Google Scholar

[43]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differential Equations, 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[44]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[45]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier- Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[46]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA., 9 (1985), 339-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[47]

K. Takayuki and T. Kazuyuki, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asympt. Anal., (2020), Publishing. doi: 10.3233/ASY-201600.  Google Scholar

[48]

J. F. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.  doi: 10.1515/zpch-1894-1338.  Google Scholar

[49]

K. Watanabe, Global existence of the Navier-Stokes-Korteweg equations with a non-decreasing pressure in $L^p$-framework, arXiv: 1907.07752. Google Scholar

[50]

Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, arXiv: 1812.11714v2. Google Scholar

[51]

H. Xu, Y. Li and F. Chen, Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data, J. Math. Fluid Mech., 19 (2017), 315–328. doi: 10.1007/s00021-016-0282-5.  Google Scholar

[52]

X. ZhaiY. Li and F. Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1806-1843.  doi: 10.1137/19M1265843.  Google Scholar

[53]

S. Zhang, A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00565-2.  Google Scholar

[54]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009), 211-224.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

show all references

References:
[1]

P. Antonelli, L. E. Hientzsch and S. Spirito, Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior, arXiv: 2001.01652. Google Scholar

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[3]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[4]

P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of the quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 255 (2017), 1161-1199.  doi: 10.1007/s00205-017-1124-1.  Google Scholar

[5]

P. Antonelli and S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110-124.  doi: 10.1016/j.na.2019.03.020.  Google Scholar

[6]

C. Audiard and B. Haspot, Global well-posedness of the Euler Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201-247.  doi: 10.1007/s00220-017-2843-8.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations., Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

D. BreschB. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Part. Diffe. Equ., 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[9]

D. BreschM. Gisclon and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975-1025.  doi: 10.1007/s00205-019-01373-w.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

F. Charve, R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, arXiv: 1805.01764. Google Scholar

[12]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[13]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314–328. doi: 10.1006/jdeq.1995.1131.  Google Scholar

[14]

Q. Chen, C. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173–1224. doi: 10.1002/cpa.20325.  Google Scholar

[15]

Z.-M. Chen and X. Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Art. 26, 23 pp. doi: 10.1007/s00021-019-0428-3.  Google Scholar

[16]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. doi: 10.1007/s002220000078.  Google Scholar

[17]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[18]

R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[19]

R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.  Google Scholar

[20]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[21]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Part. Diffe. Equ., 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[22]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[23]

E. Feireisl, Dynamics of Viscous Compressible Fluids., Oxford Univ. Press, Oxford, 2004.  Google Scholar

[24]

E. Feireisl and A. Novotný, H. Petzeltová, On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358–392. doi: 10.1007/PL00000976.  Google Scholar

[25]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97–108. doi: 10.1006/jdeq.2001.4137.  Google Scholar

[26]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611–631. doi: 10.1512/iumj.2011.60.4406.  Google Scholar

[27]

A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillarity of ideal gas, Contemporary physics, 58 (2017), 70-90.  doi: 10.1080/00107514.2016.1256123.  Google Scholar

[28]

G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., 225 (2010), 1248-1284.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[29]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[30]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[31]

B. Haspot, Existence of global strong solution for Korteweg system with large infinite energy initial data, J. Math. Anal. Appl., 438 (2016), 395-443.  doi: 10.1016/j.jmaa.2016.01.047.  Google Scholar

[32]

B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$, Math. Ann., 367 (2017), 667-700.  doi: 10.1007/s00208-016-1391-4.  Google Scholar

[33]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar

[34]

L. HeJ. Huang and C. Wang, Global stability of large solutions to the 3D compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 234 (2019), 1167-1222.  doi: 10.1007/s00205-019-01410-8.  Google Scholar

[35]

M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Internat. J. Engrg. Sci., 48 (2010), 1313-1324.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[36]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.  doi: 10.1137/090776068.  Google Scholar

[37]

M. Kawashita, On global solution of Cauchy problems for compressible Navier-Stokes equation, Nonlinear Anal., 48 (2002), 1087-1105.  doi: 10.1016/S0362-546X(00)00238-8.  Google Scholar

[38]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér., 6 (1901), 1-24.   Google Scholar

[39]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[40]

H.-K. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in ${\mathbb R}^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[41]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[42]

M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, arXiv: 1908.07224. Google Scholar

[43]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differential Equations, 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[44]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[45]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier- Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[46]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA., 9 (1985), 339-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[47]

K. Takayuki and T. Kazuyuki, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asympt. Anal., (2020), Publishing. doi: 10.3233/ASY-201600.  Google Scholar

[48]

J. F. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.  doi: 10.1515/zpch-1894-1338.  Google Scholar

[49]

K. Watanabe, Global existence of the Navier-Stokes-Korteweg equations with a non-decreasing pressure in $L^p$-framework, arXiv: 1907.07752. Google Scholar

[50]

Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, arXiv: 1812.11714v2. Google Scholar

[51]

H. Xu, Y. Li and F. Chen, Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data, J. Math. Fluid Mech., 19 (2017), 315–328. doi: 10.1007/s00021-016-0282-5.  Google Scholar

[52]

X. ZhaiY. Li and F. Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1806-1843.  doi: 10.1137/19M1265843.  Google Scholar

[53]

S. Zhang, A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00565-2.  Google Scholar

[54]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009), 211-224.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

[1]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[2]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[3]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[4]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[5]

Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020064

[6]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[7]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[8]

Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic & Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181

[9]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[10]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[11]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[12]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[13]

Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6725-6743. doi: 10.3934/dcdsb.2019164

[14]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[15]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[16]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[17]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[18]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[19]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020237

[20]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (12)
  • HTML views (26)
  • Cited by (0)

Other articles
by authors

[Back to Top]