March  2021, 41(3): 1387-1413. doi: 10.3934/dcds.2020322

Global large solutions and optimal time-decay estimates to the Korteweg system

1. 

School of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China

2. 

School of Mathematics, South China University of Technology, Guangzhou, 510640, China

Received  December 2019 Revised  May 2020 Published  September 2020

We prove the global solutions to the Korteweg system without smallness condition imposed on the vertical component of the incompressible part of the velocity. The weighted Chemin-Lerner-norm technique which is well-known for the incompressible Navier-Stokes equations is introduced to derive the a priori estimates. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument (independent of spectral analysis). In contrast to the compressible Navier-Stokes system, the time-decay estimates are more accurate owing to smoothing effect from the Korteweg tensor.

Citation: Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322
References:
[1]

P. Antonelli, L. E. Hientzsch and S. Spirito, Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior, arXiv: 2001.01652. Google Scholar

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[3]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[4]

P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of the quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 255 (2017), 1161-1199.  doi: 10.1007/s00205-017-1124-1.  Google Scholar

[5]

P. Antonelli and S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110-124.  doi: 10.1016/j.na.2019.03.020.  Google Scholar

[6]

C. Audiard and B. Haspot, Global well-posedness of the Euler Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201-247.  doi: 10.1007/s00220-017-2843-8.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations., Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

D. BreschB. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Part. Diffe. Equ., 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[9]

D. BreschM. Gisclon and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975-1025.  doi: 10.1007/s00205-019-01373-w.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

F. Charve, R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, arXiv: 1805.01764. Google Scholar

[12]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[13]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314–328. doi: 10.1006/jdeq.1995.1131.  Google Scholar

[14]

Q. Chen, C. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173–1224. doi: 10.1002/cpa.20325.  Google Scholar

[15]

Z.-M. Chen and X. Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Art. 26, 23 pp. doi: 10.1007/s00021-019-0428-3.  Google Scholar

[16]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. doi: 10.1007/s002220000078.  Google Scholar

[17]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[18]

R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[19]

R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.  Google Scholar

[20]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[21]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Part. Diffe. Equ., 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[22]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[23]

E. Feireisl, Dynamics of Viscous Compressible Fluids., Oxford Univ. Press, Oxford, 2004.  Google Scholar

[24]

E. Feireisl and A. Novotný, H. Petzeltová, On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358–392. doi: 10.1007/PL00000976.  Google Scholar

[25]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97–108. doi: 10.1006/jdeq.2001.4137.  Google Scholar

[26]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611–631. doi: 10.1512/iumj.2011.60.4406.  Google Scholar

[27]

A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillarity of ideal gas, Contemporary physics, 58 (2017), 70-90.  doi: 10.1080/00107514.2016.1256123.  Google Scholar

[28]

G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., 225 (2010), 1248-1284.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[29]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[30]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[31]

B. Haspot, Existence of global strong solution for Korteweg system with large infinite energy initial data, J. Math. Anal. Appl., 438 (2016), 395-443.  doi: 10.1016/j.jmaa.2016.01.047.  Google Scholar

[32]

B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$, Math. Ann., 367 (2017), 667-700.  doi: 10.1007/s00208-016-1391-4.  Google Scholar

[33]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar

[34]

L. HeJ. Huang and C. Wang, Global stability of large solutions to the 3D compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 234 (2019), 1167-1222.  doi: 10.1007/s00205-019-01410-8.  Google Scholar

[35]

M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Internat. J. Engrg. Sci., 48 (2010), 1313-1324.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[36]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.  doi: 10.1137/090776068.  Google Scholar

[37]

M. Kawashita, On global solution of Cauchy problems for compressible Navier-Stokes equation, Nonlinear Anal., 48 (2002), 1087-1105.  doi: 10.1016/S0362-546X(00)00238-8.  Google Scholar

[38]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér., 6 (1901), 1-24.   Google Scholar

[39]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[40]

H.-K. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in ${\mathbb R}^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[41]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[42]

M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, arXiv: 1908.07224. Google Scholar

[43]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differential Equations, 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[44]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[45]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier- Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[46]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA., 9 (1985), 339-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[47]

K. Takayuki and T. Kazuyuki, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asympt. Anal., (2020), Publishing. doi: 10.3233/ASY-201600.  Google Scholar

[48]

J. F. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.  doi: 10.1515/zpch-1894-1338.  Google Scholar

[49]

K. Watanabe, Global existence of the Navier-Stokes-Korteweg equations with a non-decreasing pressure in $L^p$-framework, arXiv: 1907.07752. Google Scholar

[50]

Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, arXiv: 1812.11714v2. Google Scholar

[51]

H. Xu, Y. Li and F. Chen, Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data, J. Math. Fluid Mech., 19 (2017), 315–328. doi: 10.1007/s00021-016-0282-5.  Google Scholar

[52]

X. ZhaiY. Li and F. Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1806-1843.  doi: 10.1137/19M1265843.  Google Scholar

[53]

S. Zhang, A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00565-2.  Google Scholar

[54]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009), 211-224.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

show all references

References:
[1]

P. Antonelli, L. E. Hientzsch and S. Spirito, Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior, arXiv: 2001.01652. Google Scholar

[2]

P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.  Google Scholar

[3]

P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.  Google Scholar

[4]

P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of the quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 255 (2017), 1161-1199.  doi: 10.1007/s00205-017-1124-1.  Google Scholar

[5]

P. Antonelli and S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110-124.  doi: 10.1016/j.na.2019.03.020.  Google Scholar

[6]

C. Audiard and B. Haspot, Global well-posedness of the Euler Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201-247.  doi: 10.1007/s00220-017-2843-8.  Google Scholar

[7]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations., Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[8]

D. BreschB. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Part. Diffe. Equ., 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.  Google Scholar

[9]

D. BreschM. Gisclon and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975-1025.  doi: 10.1007/s00205-019-01373-w.  Google Scholar

[10]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[11]

F. Charve, R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, arXiv: 1805.01764. Google Scholar

[12]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[13]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314–328. doi: 10.1006/jdeq.1995.1131.  Google Scholar

[14]

Q. Chen, C. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173–1224. doi: 10.1002/cpa.20325.  Google Scholar

[15]

Z.-M. Chen and X. Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Art. 26, 23 pp. doi: 10.1007/s00021-019-0428-3.  Google Scholar

[16]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. doi: 10.1007/s002220000078.  Google Scholar

[17]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[18]

R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.  Google Scholar

[19]

R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.  Google Scholar

[20]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[21]

D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Part. Diffe. Equ., 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.  Google Scholar

[22]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[23]

E. Feireisl, Dynamics of Viscous Compressible Fluids., Oxford Univ. Press, Oxford, 2004.  Google Scholar

[24]

E. Feireisl and A. Novotný, H. Petzeltová, On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358–392. doi: 10.1007/PL00000976.  Google Scholar

[25]

E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97–108. doi: 10.1006/jdeq.2001.4137.  Google Scholar

[26]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611–631. doi: 10.1512/iumj.2011.60.4406.  Google Scholar

[27]

A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillarity of ideal gas, Contemporary physics, 58 (2017), 70-90.  doi: 10.1080/00107514.2016.1256123.  Google Scholar

[28]

G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., 225 (2010), 1248-1284.  doi: 10.1016/j.aim.2010.03.022.  Google Scholar

[29]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[30]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[31]

B. Haspot, Existence of global strong solution for Korteweg system with large infinite energy initial data, J. Math. Anal. Appl., 438 (2016), 395-443.  doi: 10.1016/j.jmaa.2016.01.047.  Google Scholar

[32]

B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$, Math. Ann., 367 (2017), 667-700.  doi: 10.1007/s00208-016-1391-4.  Google Scholar

[33]

H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342.   Google Scholar

[34]

L. HeJ. Huang and C. Wang, Global stability of large solutions to the 3D compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 234 (2019), 1167-1222.  doi: 10.1007/s00205-019-01410-8.  Google Scholar

[35]

M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Internat. J. Engrg. Sci., 48 (2010), 1313-1324.  doi: 10.1016/j.ijengsci.2010.06.031.  Google Scholar

[36]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.  doi: 10.1137/090776068.  Google Scholar

[37]

M. Kawashita, On global solution of Cauchy problems for compressible Navier-Stokes equation, Nonlinear Anal., 48 (2002), 1087-1105.  doi: 10.1016/S0362-546X(00)00238-8.  Google Scholar

[38]

D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér., 6 (1901), 1-24.   Google Scholar

[39]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[40]

H.-K. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in ${\mathbb R}^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[41]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[42]

M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, arXiv: 1908.07224. Google Scholar

[43]

M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differential Equations, 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.  Google Scholar

[44]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.  doi: 10.1007/s00220-011-1350-6.  Google Scholar

[45]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier- Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.  Google Scholar

[46]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA., 9 (1985), 339-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[47]

K. Takayuki and T. Kazuyuki, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asympt. Anal., (2020), Publishing. doi: 10.3233/ASY-201600.  Google Scholar

[48]

J. F. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.  doi: 10.1515/zpch-1894-1338.  Google Scholar

[49]

K. Watanabe, Global existence of the Navier-Stokes-Korteweg equations with a non-decreasing pressure in $L^p$-framework, arXiv: 1907.07752. Google Scholar

[50]

Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, arXiv: 1812.11714v2. Google Scholar

[51]

H. Xu, Y. Li and F. Chen, Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data, J. Math. Fluid Mech., 19 (2017), 315–328. doi: 10.1007/s00021-016-0282-5.  Google Scholar

[52]

X. ZhaiY. Li and F. Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1806-1843.  doi: 10.1137/19M1265843.  Google Scholar

[53]

S. Zhang, A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00565-2.  Google Scholar

[54]

T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009), 211-224.  doi: 10.1007/s00220-008-0631-1.  Google Scholar

[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[3]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[4]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[15]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[16]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[17]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[18]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[19]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[20]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (207)
  • Cited by (0)

Other articles
by authors

[Back to Top]