Advanced Search
Article Contents
Article Contents

Global large solutions and optimal time-decay estimates to the Korteweg system

Abstract Full Text(HTML) Related Papers Cited by
  • We prove the global solutions to the Korteweg system without smallness condition imposed on the vertical component of the incompressible part of the velocity. The weighted Chemin-Lerner-norm technique which is well-known for the incompressible Navier-Stokes equations is introduced to derive the a priori estimates. As a byproduct, we obtain the optimal time decay rates of the solutions by using the pure energy argument (independent of spectral analysis). In contrast to the compressible Navier-Stokes system, the time-decay estimates are more accurate owing to smoothing effect from the Korteweg tensor.

    Mathematics Subject Classification: 35Q35, 76N10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Antonelli, L. E. Hientzsch and S. Spirito, Global existence of finite energy weak solutions to the Quantum Navier-Stokes equations with non-trivial far-field behavior, arXiv: 2001.01652.
    [2] P. Antonelli and P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657-686.  doi: 10.1007/s00220-008-0632-0.
    [3] P. Antonelli and P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499-527.  doi: 10.1007/s00205-011-0454-7.
    [4] P. Antonelli and S. Spirito, Global existence of finite energy weak solutions of the quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 255 (2017), 1161-1199.  doi: 10.1007/s00205-017-1124-1.
    [5] P. Antonelli and S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110-124.  doi: 10.1016/j.na.2019.03.020.
    [6] C. Audiard and B. Haspot, Global well-posedness of the Euler Korteweg system for small irrotational data, Commun. Math. Phys., 351 (2017), 201-247.  doi: 10.1007/s00220-017-2843-8.
    [7] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations., Grundlehren Math. Wiss., vol. 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [8] D. BreschB. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Part. Diffe. Equ., 28 (2003), 843-868.  doi: 10.1081/PDE-120020499.
    [9] D. BreschM. Gisclon and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: Application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975-1025.  doi: 10.1007/s00205-019-01373-w.
    [10] F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.
    [11] F. Charve, R. Danchin and J. Xu, Gevrey analyticity and decay for the compressible Navier-Stokes system with capillarity, arXiv: 1805.01764.
    [12] J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${\mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.
    [13] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs no lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314–328. doi: 10.1006/jdeq.1995.1131.
    [14] Q. Chen, C. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173–1224. doi: 10.1002/cpa.20325.
    [15] Z.-M. Chen and X. Zhai, Global large solutions and incompressible limit for the compressible Navier-Stokes equations, J. Math. Fluid Mech., 21 (2019), Art. 26, 23 pp. doi: 10.1007/s00021-019-0428-3.
    [16] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579–614. doi: 10.1007/s002220000078.
    [17] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 18 (2001), 97-133.  doi: 10.1016/S0294-1449(00)00056-1.
    [18] R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.
    [19] R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.
    [20] R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Rational Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.
    [21] D. DonatelliE. Feireisl and P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Part. Diffe. Equ., 40 (2015), 1314-1335.  doi: 10.1080/03605302.2014.972517.
    [22] J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.
    [23] E. Feireisl, Dynamics of Viscous Compressible Fluids., Oxford Univ. Press, Oxford, 2004.
    [24] E. Feireisl and A. Novotný, H. Petzeltová, On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids, J. Math. Fluid Mech., 3 (2001), 358–392. doi: 10.1007/PL00000976.
    [25] E. Feireisl, Compressible Navier-Stokes equations with a non-monotone pressure law, J. Differential Equations, 184 (2002), 97–108. doi: 10.1006/jdeq.2001.4137.
    [26] E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611–631. doi: 10.1512/iumj.2011.60.4406.
    [27] A. N. Gorban and I. V. Karlin, Beyond Navier-Stokes equations: Capillarity of ideal gas, Contemporary physics, 58 (2017), 70-90.  doi: 10.1080/00107514.2016.1256123.
    [28] G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., 225 (2010), 1248-1284.  doi: 10.1016/j.aim.2010.03.022.
    [29] B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223-249.  doi: 10.1007/s00021-009-0013-2.
    [30] B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.
    [31] B. Haspot, Existence of global strong solution for Korteweg system with large infinite energy initial data, J. Math. Anal. Appl., 438 (2016), 395-443.  doi: 10.1016/j.jmaa.2016.01.047.
    [32] B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$, Math. Ann., 367 (2017), 667-700.  doi: 10.1007/s00208-016-1391-4.
    [33] H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials for Korteweg type, J. Partial Differential Equations, 9 (1996), 323-342. 
    [34] L. HeJ. Huang and C. Wang, Global stability of large solutions to the 3D compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 234 (2019), 1167-1222.  doi: 10.1007/s00205-019-01410-8.
    [35] M. Heida and J. Málek, On compressible Korteweg fluid-like materials, Internat. J. Engrg. Sci., 48 (2010), 1313-1324.  doi: 10.1016/j.ijengsci.2010.06.031.
    [36] A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), 1025-1045.  doi: 10.1137/090776068.
    [37] M. Kawashita, On global solution of Cauchy problems for compressible Navier-Stokes equation, Nonlinear Anal., 48 (2002), 1087-1105.  doi: 10.1016/S0362-546X(00)00238-8.
    [38] D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité, Arch. Néer. Sci. Exactes Sér., 6 (1901), 1-24. 
    [39] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Annales de l'IHP, Analyse nonlinéaire, 25 (2008), 679-696.  doi: 10.1016/j.anihpc.2007.03.005.
    [40] H.-K. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in ${\mathbb R}^3$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.
    [41] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.
    [42] M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, arXiv: 1908.07224.
    [43] M. Okita, Optimal decay rate for strong solutions in critical spaces to the compressible Navier-Stokes equations, J. Differential Equations, 257 (2014), 3850-3867.  doi: 10.1016/j.jde.2014.07.011.
    [44] M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., 307 (2011), 713-759.  doi: 10.1007/s00220-011-1350-6.
    [45] M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier- Stokes system, J. Funct. Anal., 262 (2012), 3556-3584.  doi: 10.1016/j.jfa.2012.01.022.
    [46] G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal. TMA., 9 (1985), 339-418.  doi: 10.1016/0362-546X(85)90001-X.
    [47] K. Takayuki and T. Kazuyuki, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition, Asympt. Anal., (2020), Publishing. doi: 10.3233/ASY-201600.
    [48] J. F. Van der Waals, Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung, Phys. Chem., 13 (1894), 657-725.  doi: 10.1515/zpch-1894-1338.
    [49] K. Watanabe, Global existence of the Navier-Stokes-Korteweg equations with a non-decreasing pressure in $L^p$-framework, arXiv: 1907.07752.
    [50] Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, arXiv: 1812.11714v2.
    [51] H. Xu, Y. Li and F. Chen, Global solution to the incompressible inhomogeneous Navier-Stokes equations with some large initial data, J. Math. Fluid Mech., 19 (2017), 315–328. doi: 10.1007/s00021-016-0282-5.
    [52] X. ZhaiY. Li and F. Zhou, Global large solutions to the three dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 1806-1843.  doi: 10.1137/19M1265843.
    [53] S. Zhang, A class of global large solutions to the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Evol. Equ., (2020). doi: 10.1007/s00028-020-00565-2.
    [54] T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., 287 (2009), 211-224.  doi: 10.1007/s00220-008-0631-1.
  • 加载中

Article Metrics

HTML views(737) PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint