March  2021, 41(3): 1415-1447. doi: 10.3934/dcds.2020323

A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system

1. 

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan

2. 

Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

* Corresponding author: Masaru Hamano

The first author is supported by JSPS KAKENHI Grant Number JP19J13300

Received  December 2019 Revised  June 2020 Published  September 2020

Fund Project: The second author is supported by JSPS KAKENHI Grant Numbers JP17K14219, JP17H02854, JP17H02851, and JP18KK0386

In this paper, we consider the quadratic nonlinear Schrödinger system in three space dimensions. Our aim is to obtain sharp scattering criteria. Because of the mass-subcritical nature, it is difficult to do so in terms of conserved quantities. The corresponding single equation is studied by the second author and a sharp scattering criterion is established by introducing a distance from a trivial scattering solution, the zero solution. By the structure of the nonlinearity we are dealing with, the system admits a scattering solution which is a pair of the zero function and a linear Schrödinger flow. Taking this fact into account, we introduce a new optimizing quantity and give a sharp scattering criterion in terms of it.

Citation: Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323
References:
[1]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.  Google Scholar

[2]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. Google Scholar

[3]

M. ColinTh. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar

[4]

V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp. doi: 10.1016/j.na.2019.111589.  Google Scholar

[5]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[6]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.   Google Scholar

[7]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[8]

M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. Google Scholar

[9]

N. HayashiC. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.  doi: 10.7153/dea-03-26.  Google Scholar

[10]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[11]

R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276.  Google Scholar

[12]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.  Google Scholar

[13]

T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238. doi: 10.2969/aspm/02310223.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[16]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp. doi: 10.1007/s00030-017-0463-9.  Google Scholar

[17]

R. KillipS. MasakiJ. Murphy and M. Visan, The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.  doi: 10.3934/dcds.2019023.  Google Scholar

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.  doi: 10.4171/JEMS/180.  Google Scholar

[19]

R. KillipM. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[20]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.  doi: 10.3934/cpaa.2015.14.1481.  Google Scholar

[21]

S. Masaki, On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.  doi: 10.1080/03605302.2017.1286672.  Google Scholar

[22]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar

[23]

S. Masaki and J.-I. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.  doi: 10.1016/j.anihpc.2017.04.003.  Google Scholar

[24]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.  Google Scholar

[25]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.  doi: 10.1215/S0012-7094-63-03015-1.  Google Scholar

[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

show all references

References:
[1]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.  Google Scholar

[2]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. Google Scholar

[3]

M. ColinTh. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.  Google Scholar

[4]

V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp. doi: 10.1016/j.na.2019.111589.  Google Scholar

[5]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.  Google Scholar

[6]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.   Google Scholar

[7]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[8]

M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. Google Scholar

[9]

N. HayashiC. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.  doi: 10.7153/dea-03-26.  Google Scholar

[10]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.  Google Scholar

[11]

R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276.  Google Scholar

[12]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.  Google Scholar

[13]

T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238. doi: 10.2969/aspm/02310223.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[16]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp. doi: 10.1007/s00030-017-0463-9.  Google Scholar

[17]

R. KillipS. MasakiJ. Murphy and M. Visan, The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.  doi: 10.3934/dcds.2019023.  Google Scholar

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.  doi: 10.4171/JEMS/180.  Google Scholar

[19]

R. KillipM. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.  doi: 10.2140/apde.2008.1.229.  Google Scholar

[20]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.  doi: 10.3934/cpaa.2015.14.1481.  Google Scholar

[21]

S. Masaki, On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.  doi: 10.1080/03605302.2017.1286672.  Google Scholar

[22]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar

[23]

S. Masaki and J.-I. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.  doi: 10.1016/j.anihpc.2017.04.003.  Google Scholar

[24]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.  Google Scholar

[25]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.  doi: 10.1215/S0012-7094-63-03015-1.  Google Scholar

[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[1]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[9]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[10]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[11]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[12]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[13]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[14]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[18]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[19]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[20]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (80)
  • HTML views (203)
  • Cited by (0)

Other articles
by authors

[Back to Top]