-
Previous Article
Mean-square random invariant manifolds for stochastic differential equations
- DCDS Home
- This Issue
-
Next Article
Global large solutions and optimal time-decay estimates to the Korteweg system
A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system
1. | Department of Mathematics, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan |
2. | Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan |
In this paper, we consider the quadratic nonlinear Schrödinger system in three space dimensions. Our aim is to obtain sharp scattering criteria. Because of the mass-subcritical nature, it is difficult to do so in terms of conserved quantities. The corresponding single equation is studied by the second author and a sharp scattering criterion is established by introducing a distance from a trivial scattering solution, the zero solution. By the structure of the nonlinearity we are dealing with, the system admits a scattering solution which is a pair of the zero function and a linear Schrödinger flow. Taking this fact into account, we introduce a new optimizing quantity and give a sharp scattering criterion in terms of it.
References:
[1] |
T. Cazenave and F. B. Weissler,
Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529. |
[2] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. Google Scholar |
[3] |
M. Colin, Th. Colin and M. Ohta,
Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[4] |
V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp.
doi: 10.1016/j.na.2019.111589. |
[5] |
B. Dodson,
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.
doi: 10.1016/j.aim.2015.04.030. |
[6] |
J. Ginibre, T. Ozawa and G. Velo,
On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.
|
[7] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[8] |
M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. Google Scholar |
[9] |
N. Hayashi, C. Li and T. Ozawa,
Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[10] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[11] |
R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276. |
[12] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[13] |
T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238.
doi: 10.2969/aspm/02310223. |
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[15] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[16] |
R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp.
doi: 10.1007/s00030-017-0463-9. |
[17] |
R. Killip, S. Masaki, J. Murphy and M. Visan,
The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.
doi: 10.3934/dcds.2019023. |
[18] |
R. Killip, T. Tao and M. Visan,
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[19] |
R. Killip, M. Visan and X. Zhang,
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[20] |
S. Masaki,
A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.
doi: 10.3934/cpaa.2015.14.1481. |
[21] |
S. Masaki,
On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.
doi: 10.1080/03605302.2017.1286672. |
[22] |
S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar |
[23] |
S. Masaki and J.-I. Segata,
Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.
doi: 10.1016/j.anihpc.2017.04.003. |
[24] |
K. Nakanishi and T. Ozawa,
Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.
doi: 10.1007/s00030-002-8118-9. |
[25] |
R. O'Neil,
Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[26] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
show all references
References:
[1] |
T. Cazenave and F. B. Weissler,
Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529. |
[2] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. Google Scholar |
[3] |
M. Colin, Th. Colin and M. Ohta,
Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[4] |
V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp.
doi: 10.1016/j.na.2019.111589. |
[5] |
B. Dodson,
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.
doi: 10.1016/j.aim.2015.04.030. |
[6] |
J. Ginibre, T. Ozawa and G. Velo,
On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.
|
[7] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[8] |
M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. Google Scholar |
[9] |
N. Hayashi, C. Li and T. Ozawa,
Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[10] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[11] |
R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276. |
[12] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[13] |
T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238.
doi: 10.2969/aspm/02310223. |
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[15] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[16] |
R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp.
doi: 10.1007/s00030-017-0463-9. |
[17] |
R. Killip, S. Masaki, J. Murphy and M. Visan,
The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.
doi: 10.3934/dcds.2019023. |
[18] |
R. Killip, T. Tao and M. Visan,
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[19] |
R. Killip, M. Visan and X. Zhang,
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[20] |
S. Masaki,
A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.
doi: 10.3934/cpaa.2015.14.1481. |
[21] |
S. Masaki,
On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.
doi: 10.1080/03605302.2017.1286672. |
[22] |
S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. Google Scholar |
[23] |
S. Masaki and J.-I. Segata,
Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.
doi: 10.1016/j.anihpc.2017.04.003. |
[24] |
K. Nakanishi and T. Ozawa,
Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.
doi: 10.1007/s00030-002-8118-9. |
[25] |
R. O'Neil,
Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[26] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[1] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[7] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[8] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[9] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[10] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[11] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[12] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[13] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[14] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[15] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[16] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[17] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[18] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[19] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[20] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]