March  2021, 41(3): 1415-1447. doi: 10.3934/dcds.2020323

A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system

1. 

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan

2. 

Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan

* Corresponding author: Masaru Hamano

The first author is supported by JSPS KAKENHI Grant Number JP19J13300

Received  December 2019 Revised  June 2020 Published  March 2021 Early access  September 2020

Fund Project: The second author is supported by JSPS KAKENHI Grant Numbers JP17K14219, JP17H02854, JP17H02851, and JP18KK0386

In this paper, we consider the quadratic nonlinear Schrödinger system in three space dimensions. Our aim is to obtain sharp scattering criteria. Because of the mass-subcritical nature, it is difficult to do so in terms of conserved quantities. The corresponding single equation is studied by the second author and a sharp scattering criterion is established by introducing a distance from a trivial scattering solution, the zero solution. By the structure of the nonlinearity we are dealing with, the system admits a scattering solution which is a pair of the zero function and a linear Schrödinger flow. Taking this fact into account, we introduce a new optimizing quantity and give a sharp scattering criterion in terms of it.

Citation: Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323
References:
[1]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.

[2]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048.

[3]

M. ColinTh. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[4]

V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp. doi: 10.1016/j.na.2019.111589.

[5]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.

[6]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239. 

[7]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.

[8]

M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245.

[9]

N. HayashiC. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.  doi: 10.7153/dea-03-26.

[10]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.

[11]

R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276.

[12]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.

[13]

T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238. doi: 10.2969/aspm/02310223.

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[16]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp. doi: 10.1007/s00030-017-0463-9.

[17]

R. KillipS. MasakiJ. Murphy and M. Visan, The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.  doi: 10.3934/dcds.2019023.

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.  doi: 10.4171/JEMS/180.

[19]

R. KillipM. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.  doi: 10.2140/apde.2008.1.229.

[20]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.  doi: 10.3934/cpaa.2015.14.1481.

[21]

S. Masaki, On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.  doi: 10.1080/03605302.2017.1286672.

[22]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234.

[23]

S. Masaki and J.-I. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.  doi: 10.1016/j.anihpc.2017.04.003.

[24]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.

[25]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.  doi: 10.1215/S0012-7094-63-03015-1.

[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.

show all references

References:
[1]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.

[2]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048.

[3]

M. ColinTh. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.  doi: 10.1016/j.anihpc.2009.01.011.

[4]

V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp. doi: 10.1016/j.na.2019.111589.

[5]

B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.  doi: 10.1016/j.aim.2015.04.030.

[6]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239. 

[7]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.

[8]

M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245.

[9]

N. HayashiC. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.  doi: 10.7153/dea-03-26.

[10]

N. HayashiT. Ozawa and K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.  doi: 10.1016/j.anihpc.2012.10.007.

[11]

R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276.

[12]

T. InuiN. Kishimoto and K. Nishimura, Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.  doi: 10.3934/dcds.2019275.

[13]

T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238. doi: 10.2969/aspm/02310223.

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.

[15]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.

[16]

R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp. doi: 10.1007/s00030-017-0463-9.

[17]

R. KillipS. MasakiJ. Murphy and M. Visan, The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.  doi: 10.3934/dcds.2019023.

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.  doi: 10.4171/JEMS/180.

[19]

R. KillipM. Visan and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.  doi: 10.2140/apde.2008.1.229.

[20]

S. Masaki, A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.  doi: 10.3934/cpaa.2015.14.1481.

[21]

S. Masaki, On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.  doi: 10.1080/03605302.2017.1286672.

[22]

S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234.

[23]

S. Masaki and J.-I. Segata, Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.  doi: 10.1016/j.anihpc.2017.04.003.

[24]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.

[25]

R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.  doi: 10.1215/S0012-7094-63-03015-1.

[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.

[1]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[2]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[3]

Rowan Killip, Satoshi Masaki, Jason Murphy, Monica Visan. The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 553-583. doi: 10.3934/dcds.2019023

[4]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[5]

Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202

[6]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[7]

Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286

[8]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[9]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[10]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

[11]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[12]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[13]

Younghun Hong, Sangdon Jin. Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3103-3118. doi: 10.3934/dcds.2022010

[14]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[15]

Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085

[16]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[17]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[18]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[19]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[20]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (256)
  • HTML views (460)
  • Cited by (0)

Other articles
by authors

[Back to Top]