March  2021, 41(3): 1469-1482. doi: 10.3934/dcds.2020325

Global graph of metric entropy on expanding Blaschke products

1. 

Department of Mathematics, Queens College of the City University of New York, Flushing, NY 11367-1597

2. 

Department of Mathematics, Graduate Center of the City University of New York, New York, NY 10016

* Corresponding author

Received  April 2019 Revised  July 2020 Published  September 2020

Fund Project: This material is based upon work supported by the National Science Foundation. It is also partially supported by the Simons Foundation collaboration grant (grant number 523341) and the PSC-CUNY Enhanced Research Award (award number 62777-00 50)

We study the global picture of the metric entropy on the space of expanding Blaschke products. We first construct a smooth path in the space tending to a parabolic Blaschke product. We prove that the metric entropy on this path tends to 0 as the path tends to this parabolic Blaschke product. It turns out that the limiting parabolic Blaschke product on the unit circle is conjugate to the famous Boole map on the real line. Thus we can give a new explanation of Boole's formula discovered more than one hundred and fifty years ago. We modify the first smooth path to get a second smooth path in the space of expanding Blaschke products. The second smooth path tends to a totally degenerate map. We see that the first and second smooth paths have completely different asymptotic behaviors near the boundary of the space of expanding Blaschke products. However, they represent the same smooth path in the space of all smooth conjugacy classes of expanding Blaschke products. We use this to give a complete description of the global graph of the metric entropy on the space of expanding Blaschke products. We prove that the global graph looks like a bell. It is the first result to show a global picture of the metric entropy on a space of hyperbolic dynamical systems. We apply our results to the measure-theoretic entropy of a quadratic polynomial with respect to its Gibbs measure on its Julia set. We prove that the measure-theoretic entropy on the main cardioid of the Mandelbrot set is a real analytic function and asymptotically zero near the boundary.

Citation: Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, Vol 50, American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

R. Adler and B. Weiss, Ergodic infinite measure preserving transformation of Boole, Israel Journal of Mathematics, 16 (1973), 263-278.  doi: 10.1007/BF02756706.  Google Scholar

[3]

G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals, Philos. Trans. Roy. Soc. London, 147, Part III (1857), 745–803. doi: 10.1098/rstl.1857.0037.  Google Scholar

[4]

C. Doering and R. Mañé, The dynamics of Inner Functions, Ensaios Matemáticos, 3 (1991), 2-80.   Google Scholar

[5] A. Katok and B. Hasselbratt, Introduction to the Modern Theorey of Dynamical Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511809187.  Google Scholar
[6]

H. HuM. Jiang and Y. Jiang, Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure, Discrete and Continuous Dynamical Systems, 22 (2008), 215-234.  doi: 10.3934/dcds.2008.22.215.  Google Scholar

[7]

H. HuM. Jiang and Y. Jiang, Infimum of the metric entropy of volume preserving Anosov systems, Discrete and Continuous Dynamical Systems, 37 (2017), 4767-4783.  doi: 10.3934/dcds.2017205.  Google Scholar

[8]

Y. Jiang, Symmetric invariant measures, Contemporary Mathematics, AMS, Vol. 575, 2012,211–218.  Google Scholar

[9]

Y. Jiang, Geometric Gibbs theory, Science China–Mathematics, online first June 25, 2020. doi: 10.1007/s11425-019-1638-6.  Google Scholar

[10]

R. Mañè, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin-Heidelberg, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[11]

G. Pianigiani, First return map and invariant measures, Israel Journal of Mathematics, 35 (1980), 32-48.  doi: 10.1007/BF02760937.  Google Scholar

[12]

F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, Proc. ICM 2018, vol. 2, 2081–2160. Google Scholar

[13]

F. PrzytyckiM. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Annals of Mathematics, 130 (1989), 1-40.  doi: 10.2307/1971475.  Google Scholar

[14]

F. PrzytyckiM. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Mathematica, 97 (1991), 189-225.  doi: 10.4064/sm-97-3-189-225.  Google Scholar

[15]

D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241.  doi: 10.1007/s002200050134.  Google Scholar

[16]

M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.  doi: 10.2307/2373276.  Google Scholar

[17]

M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Erg. Th. & Dyn. Sys., 5 (1985), 285-289.  doi: 10.1017/S014338570000290X.  Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, Vol 50, American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

R. Adler and B. Weiss, Ergodic infinite measure preserving transformation of Boole, Israel Journal of Mathematics, 16 (1973), 263-278.  doi: 10.1007/BF02756706.  Google Scholar

[3]

G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals, Philos. Trans. Roy. Soc. London, 147, Part III (1857), 745–803. doi: 10.1098/rstl.1857.0037.  Google Scholar

[4]

C. Doering and R. Mañé, The dynamics of Inner Functions, Ensaios Matemáticos, 3 (1991), 2-80.   Google Scholar

[5] A. Katok and B. Hasselbratt, Introduction to the Modern Theorey of Dynamical Systems, Cambridge University Press, 1996.  doi: 10.1017/CBO9780511809187.  Google Scholar
[6]

H. HuM. Jiang and Y. Jiang, Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure, Discrete and Continuous Dynamical Systems, 22 (2008), 215-234.  doi: 10.3934/dcds.2008.22.215.  Google Scholar

[7]

H. HuM. Jiang and Y. Jiang, Infimum of the metric entropy of volume preserving Anosov systems, Discrete and Continuous Dynamical Systems, 37 (2017), 4767-4783.  doi: 10.3934/dcds.2017205.  Google Scholar

[8]

Y. Jiang, Symmetric invariant measures, Contemporary Mathematics, AMS, Vol. 575, 2012,211–218.  Google Scholar

[9]

Y. Jiang, Geometric Gibbs theory, Science China–Mathematics, online first June 25, 2020. doi: 10.1007/s11425-019-1638-6.  Google Scholar

[10]

R. Mañè, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, Berlin-Heidelberg, 1987. doi: 10.1007/978-3-642-70335-5.  Google Scholar

[11]

G. Pianigiani, First return map and invariant measures, Israel Journal of Mathematics, 35 (1980), 32-48.  doi: 10.1007/BF02760937.  Google Scholar

[12]

F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, Proc. ICM 2018, vol. 2, 2081–2160. Google Scholar

[13]

F. PrzytyckiM. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Annals of Mathematics, 130 (1989), 1-40.  doi: 10.2307/1971475.  Google Scholar

[14]

F. PrzytyckiM. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Mathematica, 97 (1991), 189-225.  doi: 10.4064/sm-97-3-189-225.  Google Scholar

[15]

D. Ruelle, Differentiation of SRB states, Comm. Math. Phys., 187 (1997), 227-241.  doi: 10.1007/s002200050134.  Google Scholar

[16]

M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.  doi: 10.2307/2373276.  Google Scholar

[17]

M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Erg. Th. & Dyn. Sys., 5 (1985), 285-289.  doi: 10.1017/S014338570000290X.  Google Scholar

Figure 1.  The global graph of the metric entropy $ \mathcal E $ on $ S \mathcal{B} $
Figure 2.  A graph of the metric entropy $ {\mathcal E}_{d} $ on $ S \mathcal{B}(d) $ for $ d>2 $
[1]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[2]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[3]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[4]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[5]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[6]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[12]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[18]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (208)
  • Cited by (0)

Other articles
by authors

[Back to Top]