doi: 10.3934/dcds.2020328

Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations

1. 

Department of Mathematics and Statistics, Missouri University of Science & Technology, Rolla, MO, USA

2. 

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

* Corresponding author: Jason Murphy

Received  July 2019 Revised  September 2019 Published  September 2020

We consider nonlinear Schrödinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general localized waves. This extends the well-known results concerning non-existence of non-trivial scattering states for long-range nonlinearities.

Citation: Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020328
References:
[1]

J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.  doi: 10.1063/1.526074.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp.  Google Scholar

[3]

V. BisogninM. Sepúlveda and O. Vera, On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.  doi: 10.1016/j.apnum.2008.12.017.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp. doi: 10.1090/cln/010.  Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869. doi: 10.1137/19M1258402.  Google Scholar

[7]

R. T. Glassey, On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.  doi: 10.1090/S0002-9947-1973-0330782-7.  Google Scholar

[8]

R. T. Glassey, Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.  doi: 10.1007/BF01609164.  Google Scholar

[9]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[10]

N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp.  Google Scholar

[11]

N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp. doi: 10.1063/1.4874107.  Google Scholar

[12]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[13]

S. Masaki and H. Miyazaki, Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.   Google Scholar

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.   Google Scholar
[15]

A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.   Google Scholar

[16]

A. Shimomura and Y. Tsutsumi, Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.   Google Scholar

[17]

W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78. doi: 10.1007/978-94-010-2147-0_3.  Google Scholar

[18]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

show all references

References:
[1]

J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.  doi: 10.1063/1.526074.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp.  Google Scholar

[3]

V. BisogninM. Sepúlveda and O. Vera, On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.  doi: 10.1016/j.apnum.2008.12.017.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp. doi: 10.1090/cln/010.  Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869. doi: 10.1137/19M1258402.  Google Scholar

[7]

R. T. Glassey, On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.  doi: 10.1090/S0002-9947-1973-0330782-7.  Google Scholar

[8]

R. T. Glassey, Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.  doi: 10.1007/BF01609164.  Google Scholar

[9]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[10]

N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp.  Google Scholar

[11]

N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp. doi: 10.1063/1.4874107.  Google Scholar

[12]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[13]

S. Masaki and H. Miyazaki, Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.   Google Scholar

[14] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.   Google Scholar
[15]

A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.   Google Scholar

[16]

A. Shimomura and Y. Tsutsumi, Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.   Google Scholar

[17]

W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78. doi: 10.1007/978-94-010-2147-0_3.  Google Scholar

[18]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]