April  2021, 41(4): 1519-1542. doi: 10.3934/dcds.2020329

Averaging of Hamilton-Jacobi equations along divergence-free vector fields

1. 

Institute for Mathematics and Computer Science, Tsuda University, 2-1-1 Tsuda, Kodaira, Tokyo 187-8577 Japan

2. 

National Institute of Technology, Maizuru College, 234 Shiroya, Maizuru-shi, Kyoto 625-8511 Japan

* Corresponding author: Hitoshi Ishii

Received  January 2020 Revised  June 2020 Published  September 2020

Fund Project: The first author is partially supported by the JSPS grants: KAKENHI #16H03948, #18H00833, #20K03688, #20H01817. The second author is partially supported by the JSPS grants: KAKENHI #20K03688

We study the asymptotic behavior of solutions to the Dirichlet problem for Hamilton-Jacobi equations with large drift terms, where the drift terms are given by divergence-free vector fields. This is an attempt to understand the averaging effect for fully nonlinear degenerate elliptic equations. In this work, we restrict ourselves to the case of Hamilton-Jacobi equations. The second author has already established averaging results for Hamilton-Jacobi equations with convex Hamiltonians ($ G $ below) under the classical formulation of the Dirichlet condition. Here we treat the Dirichlet condition in the viscosity sense and establish an averaging result for Hamilton-Jacobi equations with relatively general Hamiltonian $ G $.

Citation: Hitoshi Ishii, Taiga Kumagai. Averaging of Hamilton-Jacobi equations along divergence-free vector fields. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1519-1542. doi: 10.3934/dcds.2020329
References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Comm. Partial Differential Equations, 40 (2015), 652-693.  doi: 10.1080/03605302.2014.974764.  Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrìand and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445.  doi: 10.1007/s00030-012-0158-1.  Google Scholar

[3]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[4]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[5]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.  Google Scholar

[6]

M. I. Freidlin and A. D. Wentzell, Random perturbations of Hamiltonian systems, Mem. Amer. Math. Soc., 109 (1994), viii+82pp. doi: 10.1090/memo/0523.  Google Scholar

[7]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929.  doi: 10.2140/apde.2015.8.1891.  Google Scholar

[8]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 357–448. doi: 10.24033/asens.2323.  Google Scholar

[9]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.  doi: 10.1051/cocv/2012002.  Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 105-135.   Google Scholar

[12]

H. Ishii and P. E. Souganidis, A pde approach to small stochastic perturbations of Hamiltonian flows, J. Differential Equations, 252 (2012), 1748-1775.  doi: 10.1016/j.jde.2011.08.036.  Google Scholar

[13]

T. Kumagai, A perturbation problem involving singular perturbations of domains for Hamilton-Jacobi equations, Funkcial. Ekvac., 61 (2018), 377-427.  doi: 10.1619/fesi.61.377.  Google Scholar

[14]

T. Kumagai, An asymptotic analysis for Hamilton-Jacobi equations with large Hamiltonian drift terms, Adv. Calc. Var., 2017. doi: 10.1515/acv-2017-0046.  Google Scholar

[15]

T. Kumagai, A Study of Hamilton-Jacobi Equations with Large Hamiltonian Drift Terms, Ph.D, Waseda University, Tokyo, Japan, 2018. Google Scholar

[16]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: Well posedness and stability, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 535-545.  doi: 10.4171/RLM/747.  Google Scholar

[17]

P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807-816.  doi: 10.4171/RLM/786.  Google Scholar

show all references

References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Comm. Partial Differential Equations, 40 (2015), 652-693.  doi: 10.1080/03605302.2014.974764.  Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrìand and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445.  doi: 10.1007/s00030-012-0158-1.  Google Scholar

[3]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[4]

M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[5]

L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), 359-375.  doi: 10.1017/S0308210500018631.  Google Scholar

[6]

M. I. Freidlin and A. D. Wentzell, Random perturbations of Hamiltonian systems, Mem. Amer. Math. Soc., 109 (1994), viii+82pp. doi: 10.1090/memo/0523.  Google Scholar

[7]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929.  doi: 10.2140/apde.2015.8.1891.  Google Scholar

[8]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 357–448. doi: 10.24033/asens.2323.  Google Scholar

[9]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM Control Optim. Calc. Var., 19 (2013), 129-166.  doi: 10.1051/cocv/2012002.  Google Scholar

[10]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[11]

H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 105-135.   Google Scholar

[12]

H. Ishii and P. E. Souganidis, A pde approach to small stochastic perturbations of Hamiltonian flows, J. Differential Equations, 252 (2012), 1748-1775.  doi: 10.1016/j.jde.2011.08.036.  Google Scholar

[13]

T. Kumagai, A perturbation problem involving singular perturbations of domains for Hamilton-Jacobi equations, Funkcial. Ekvac., 61 (2018), 377-427.  doi: 10.1619/fesi.61.377.  Google Scholar

[14]

T. Kumagai, An asymptotic analysis for Hamilton-Jacobi equations with large Hamiltonian drift terms, Adv. Calc. Var., 2017. doi: 10.1515/acv-2017-0046.  Google Scholar

[15]

T. Kumagai, A Study of Hamilton-Jacobi Equations with Large Hamiltonian Drift Terms, Ph.D, Waseda University, Tokyo, Japan, 2018. Google Scholar

[16]

P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: Well posedness and stability, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 (2016), 535-545.  doi: 10.4171/RLM/747.  Google Scholar

[17]

P.-L. Lions and P. Souganidis, Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 807-816.  doi: 10.4171/RLM/786.  Google Scholar

Figure 1.  $ N = 6 $
[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[5]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[6]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[7]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[8]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[9]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[10]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[11]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[14]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[15]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[16]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[17]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[18]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[19]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[20]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (69)
  • HTML views (187)
  • Cited by (0)

Other articles
by authors

[Back to Top]