# American Institute of Mathematical Sciences

doi: 10.3934/dcds.2020329

## Averaging of Hamilton-Jacobi equations along divergence-free vector fields

 1 Institute for Mathematics and Computer Science, Tsuda University, 2-1-1 Tsuda, Kodaira, Tokyo 187-8577 Japan 2 National Institute of Technology, Maizuru College, 234 Shiroya, Maizuru-shi, Kyoto 625-8511 Japan

* Corresponding author: Hitoshi Ishii

Received  January 2020 Revised  June 2020 Published  September 2020

Fund Project: The first author is partially supported by the JSPS grants: KAKENHI #16H03948, #18H00833, #20K03688, #20H01817. The second author is partially supported by the JSPS grants: KAKENHI #20K03688

We study the asymptotic behavior of solutions to the Dirichlet problem for Hamilton-Jacobi equations with large drift terms, where the drift terms are given by divergence-free vector fields. This is an attempt to understand the averaging effect for fully nonlinear degenerate elliptic equations. In this work, we restrict ourselves to the case of Hamilton-Jacobi equations. The second author has already established averaging results for Hamilton-Jacobi equations with convex Hamiltonians ($G$ below) under the classical formulation of the Dirichlet condition. Here we treat the Dirichlet condition in the viscosity sense and establish an averaging result for Hamilton-Jacobi equations with relatively general Hamiltonian $G$.

Citation: Hitoshi Ishii, Taiga Kumagai. Averaging of Hamilton-Jacobi equations along divergence-free vector fields. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020329
##### References:

show all references

##### References:
$N = 6$
 [1] Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 [2] Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020024 [3] Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 [4] Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i [5] Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 [6] Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 [7] Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 [8] Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 [9] Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 [10] Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855 [11] Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 [12] Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447 [13] David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 [14] Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 [15] Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 [16] Qing Liu, Atsushi Nakayasu. Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 157-183. doi: 10.3934/dcds.2019007 [17] Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225 [18] Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 [19] Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 [20] Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295