Advanced Search
Article Contents
Article Contents

Jordan decomposition and the recurrent set of flows of automorphisms

  • * Corresponding author: Víctor Ayala

    * Corresponding author: Víctor Ayala 
Supported by Proyecto Fondecyt n° 1190142. Conicyt, Chile.
Supported by Fapesp grant 2018/10696-6
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we show that any linear vector field $ \mathcal{X} $ on a connected Lie group $ G $ admits a Jordan decomposition and the recurrent set of the associated flow of automorphisms is given as the intersection of the fixed points of the hyperbolic and nilpotent components of its Jordan decomposition.

    Mathematics Subject Classification: 37B20, 54H20, 37B99.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. I. Arnold and A. Avez, Ergodic Problems in Classical Mechanics, , New York: Benjamin, 1968.
    [2] V. Ayala and A. Da Silva, Controllability of linear control systems on Lie groups with semisimple finite center, SIAM Journal on Control and Optimization, 55 (2017), 1332-1343.  doi: 10.1137/15M1053037.
    [3] V. Ayala and A. Da Silva, On the characterization of the controllability property for linear control systems on nonnilpotent, solvable threedimensional Lie groups, Journal of Differential Equations, 266 (2019), 8233-8257.  doi: 10.1016/j.jde.2018.12.027.
    [4] V. AyalaA. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups, Nonlinear Differential Equations and Applications - NoDEA, 24 (2017), 1-15.  doi: 10.1007/s00030-017-0430-5.
    [5] V. AyalaA. Da SilvaP. Jouan and G. Zsigmond, Control sets of linear systems on semi-simple Lie groups, J. Differ. Equ., 269 (2020), 449-466.  doi: 10.1016/j.jde.2019.12.010.
    [6] V. Ayala and P. Jouan, Almost-riemannian geometry on lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.
    [7] V. Ayala and J. Tirao, Linear control systems on lie groups and controllability, American Mathematical Society, Series: Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.
    [8] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 372-390.  doi: 10.1137/140998342.
    [9] T. FerraiolM. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds, Discrete and Continuous Dynamical Systems - Series A, 26 (2010), 923-947.  doi: 10.3934/dcds.2010.26.923.
    [10] P. Jouan, Equivalence of control systems with linear systems on lie groups and homogeneous spaces, ESAIM: Control Optimization and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.
    [11] V. Kivioja and E. Le Donne, Isometries of nilpotent metric groups, J. École Polytechnique, Mathématiques, Tome 4 (2017), 473–482. doi: 10.5802/jep.48.
    [12] A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser Boston, Inc., Boston, MA, 2002.
    [13] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.  doi: 10.1016/S0001-8708(76)80002-3.
    [14] G. D. Mostow, Fully reducible subgroups of algebraic groups, American Journal of Mathematics, 78 (1956), 200-221.  doi: 10.2307/2372490.
    [15] E. Noether, Invariant variation problems, Transp. Theory Statist. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.
    [16] M. Patrão, Entropy and its variational principle for non-compact metric spaces, Ergod. Th. & Dynam. Sys., 30 (2010), 1529-1542.  doi: 10.1017/S0143385709000674.
    [17] M. Patrão, The topological entropy of endomorphisms of Lie groups, Israel Journal of Mathematics, 234 (2019), 55-80.  doi: 10.1007/s11856-019-1910-6.
    [18] A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras Ⅲ - Structure of Lie Groups and Lie Algebras, , Berlin: Springer, 1990. doi: 10.1007/978-3-642-74334-4.
    [19] L. A. B. San Martin, Algebras de Lie, Second Edition, Editora Unicamp, 2010.
  • 加载中

Article Metrics

HTML views(380) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint