    doi: 10.3934/dcds.2020331

## A Liouville theorem of parabolic Monge-AmpÈre equations in half-space

 1 School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China 2 School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China

* Corresponding author: Bo Wang

Received  February 2020 Revised  June 2020 Published  September 2020

Fund Project: The first and second author are partially supported by NSFC 11871102 and 11631002. The third author is partially supported by NSFC 11701027 and Beijing Institute of Technology Research Fund Program for Young Scholars

In this paper, we establish the gradient and second derivative estimates for solutions to two kinds of parabolic Monge-Ampère equations in half-space under certain boundary data and growth condition. We also use such estimates to obtain the Liouville theorems for these two kinds of parabolic Monge-Ampère equations and one kind of elliptic Monge-Ampère equation.

Citation: Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020331
##### References:
  J. Bao, H. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar  L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar  L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar  E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar  S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar  C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar  C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar  X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar  K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar  J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar  N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303. Google Scholar  G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar  A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar  O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar  O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar  K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar  B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar  R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446. Google Scholar  R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254. Google Scholar  R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454. Google Scholar  J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar  W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar

show all references

##### References:
  J. Bao, H. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar  L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar  L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar  E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar  S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar  C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar  C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar  X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar  K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar  J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar  N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303. Google Scholar  G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar  A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar  O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar  O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar  K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar  B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar  R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446. Google Scholar  R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254. Google Scholar  R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454. Google Scholar  J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar  W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar
  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267  Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249  Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374  Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106  Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255  Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463  Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247  Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262  Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055  Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292  Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364  Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340  Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252  Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276  Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355  Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266  Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380  Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073  Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297  Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.338