doi: 10.3934/dcds.2020331

A Liouville theorem of parabolic Monge-AmpÈre equations in half-space

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

2. 

School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China

* Corresponding author: Bo Wang

Received  February 2020 Revised  June 2020 Published  September 2020

Fund Project: The first and second author are partially supported by NSFC 11871102 and 11631002. The third author is partially supported by NSFC 11701027 and Beijing Institute of Technology Research Fund Program for Young Scholars

In this paper, we establish the gradient and second derivative estimates for solutions to two kinds of parabolic Monge-Ampère equations in half-space under certain boundary data and growth condition. We also use such estimates to obtain the Liouville theorems for these two kinds of parabolic Monge-Ampère equations and one kind of elliptic Monge-Ampère equation.

Citation: Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020331
References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar

[3]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar

[4]

E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar

[5]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[6]

C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[7]

C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[8]

X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar

[9]

K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar

[10]

J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar

[11]

N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303.  Google Scholar

[12]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar

[13]

A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar

[14]

O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[15]

O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[16]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar

[17]

B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar

[18]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[19]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.   Google Scholar

[20]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.   Google Scholar

[21]

J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar

show all references

References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar

[3]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar

[4]

E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar

[5]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[6]

C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[7]

C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[8]

X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar

[9]

K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar

[10]

J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar

[11]

N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303.  Google Scholar

[12]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar

[13]

A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar

[14]

O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[15]

O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[16]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar

[17]

B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar

[18]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[19]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.   Google Scholar

[20]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.   Google Scholar

[21]

J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar

[1]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[2]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[3]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[4]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[5]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[6]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[7]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[8]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[9]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[10]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[11]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[12]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[13]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[14]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[15]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[16]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[17]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[18]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[19]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[20]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (6)
  • HTML views (14)
  • Cited by (0)

Other articles
by authors

[Back to Top]