April  2021, 41(4): 1579-1604. doi: 10.3934/dcds.2020332

Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China

Received  March 2020 Revised  August 2020 Published  April 2021 Early access  September 2020

Fund Project: This work was supported by the National Science Foundation of China Grant (11401459, 11871389), the Natural Science Foundation of Shaanxi Province (2018JM1012) and the Fundamental Research Funds for the Central Universities (xjj2018088)

The objective of this paper is to study the well-posedness of solutions for the three dimensional planetary geostrophic equations of large-scale ocean circulation with additive noise. Since strong coupling terms and the noise term create some difficulties in the process of showing the existence of weak solutions, we will first show the existence of weak solutions by the monotonicity methods when the initial data satisfies some "regular" condition. For the case of general initial data, we will establish the existence of weak solutions by taking a sequence of "regular" initial data and proving the convergence in probability as well as some weak convergence of the corresponding solution sequences. Finally, we establish the existence of weak $ \mathcal{D} $-pullback mean random attractors in the framework developed in [11,25].

Citation: Bo You. Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1579-1604. doi: 10.3934/dcds.2020332
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.

[3]

Z. BrzeźniakE. Hausenblas and J. H. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.

[4]

C. S. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.  doi: 10.1002/cpa.10056.

[5]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[6]

Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp. doi: 10.1142/S0219493718500387.

[7]

J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.

[8]

H. J. Gao and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.  doi: 10.1016/j.jde.2019.06.015.

[9]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989.

[10]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[11]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.

[12]

M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988.

[13]

J. Pedlosky, The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.  doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2.

[14]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

[15]

R. M. SamelsonR. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.  doi: 10.1080/00036819808840682.

[16]

R. M. SamelsonR. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14. 

[17]

R. M. Samelson and G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.  doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2.

[18]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.

[19]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965.

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[21]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[22]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.

[23]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[24]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.

[25]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.

[26]

B. You, Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.  doi: 10.1080/17442508.2016.1276913.

[27]

B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831.

[28]

B. You and F. Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.  doi: 10.1080/07362994.2015.1126184.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.

[3]

Z. BrzeźniakE. Hausenblas and J. H. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.

[4]

C. S. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.  doi: 10.1002/cpa.10056.

[5]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[6]

Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp. doi: 10.1142/S0219493718500387.

[7]

J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.

[8]

H. J. Gao and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.  doi: 10.1016/j.jde.2019.06.015.

[9]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989.

[10]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[11]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.

[12]

M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988.

[13]

J. Pedlosky, The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.  doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2.

[14]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

[15]

R. M. SamelsonR. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.  doi: 10.1080/00036819808840682.

[16]

R. M. SamelsonR. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14. 

[17]

R. M. Samelson and G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.  doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2.

[18]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.

[19]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965.

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[21]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[22]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.

[23]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[24]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.

[25]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.

[26]

B. You, Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.  doi: 10.1080/17442508.2016.1276913.

[27]

B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831.

[28]

B. You and F. Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.  doi: 10.1080/07362994.2015.1126184.

[1]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations and Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[2]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[3]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[4]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure and Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[5]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[6]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29 (5) : 3097-3119. doi: 10.3934/era.2021028

[9]

Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022093

[10]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure and Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[11]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[12]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[13]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[14]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[15]

Elaine Cozzi, James P. Kelliher. Well-posedness of the 2D Euler equations when velocity grows at infinity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2361-2392. doi: 10.3934/dcds.2019100

[16]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[17]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[18]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure and Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[19]

Aiting Le, Chenyin Qian. Smoothing effect and well-posedness for 2D Boussinesq equations in critical Sobolev space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022057

[20]

Xiaoxiao Suo, Quansen Jiu. Global well-posedness of 2D incompressible Magnetohydrodynamic equations with horizontal dissipation. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022063

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (193)
  • HTML views (194)
  • Cited by (0)

Other articles
by authors

[Back to Top]