-
Previous Article
Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order
- DCDS Home
- This Issue
-
Next Article
A Liouville theorem of parabolic Monge-AmpÈre equations in half-space
Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China |
The objective of this paper is to study the well-posedness of solutions for the three dimensional planetary geostrophic equations of large-scale ocean circulation with additive noise. Since strong coupling terms and the noise term create some difficulties in the process of showing the existence of weak solutions, we will first show the existence of weak solutions by the monotonicity methods when the initial data satisfies some "regular" condition. For the case of general initial data, we will establish the existence of weak solutions by taking a sequence of "regular" initial data and proving the convergence in probability as well as some weak convergence of the corresponding solution sequences. Finally, we establish the existence of weak $ \mathcal{D} $-pullback mean random attractors in the framework developed in [
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1037-5. |
[3] |
Z. Brzeźniak, E. Hausenblas and J. H. Zhu,
2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.
doi: 10.1016/j.na.2012.10.011. |
[4] |
C. S. Cao and E. S. Titi,
Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.
doi: 10.1002/cpa.10056. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp.
doi: 10.1142/S0219493718500387. |
[7] |
J. P. Eckmann and D. Ruelle,
Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617. |
[8] |
H. J. Gao and H. Liu,
Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.
doi: 10.1016/j.jde.2019.06.015. |
[9] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989. |
[10] |
P. E. Kloeden and J. A. Langa,
Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[11] |
P. E. Kloeden and T. Lorenz,
Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016. |
[12] |
M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988. |
[13] |
J. Pedlosky,
The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.
doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2. |
[14] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar |
[15] |
R. M. Samelson, R. Temam and S. Wang,
Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.
doi: 10.1080/00036819808840682. |
[16] |
R. M. Samelson, R. Temam and S. Wang,
Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14.
|
[17] |
R. M. Samelson and G. K. Vallis,
A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.
doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2. |
[18] |
B. Schmalfuss,
Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.
doi: 10.1016/S0362-546X(96)00015-6. |
[19] |
A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965. |
[20] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[21] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099. |
[23] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[24] |
B. Wang,
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.
doi: 10.1016/j.jde.2019.08.007. |
[25] |
B. Wang,
Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5. |
[26] |
B. You,
Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.
doi: 10.1080/17442508.2016.1276913. |
[27] |
B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831. Google Scholar |
[28] |
B. You and F. Li,
Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.
doi: 10.1080/07362994.2015.1126184. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1037-5. |
[3] |
Z. Brzeźniak, E. Hausenblas and J. H. Zhu,
2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.
doi: 10.1016/j.na.2012.10.011. |
[4] |
C. S. Cao and E. S. Titi,
Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.
doi: 10.1002/cpa.10056. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp.
doi: 10.1142/S0219493718500387. |
[7] |
J. P. Eckmann and D. Ruelle,
Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617. |
[8] |
H. J. Gao and H. Liu,
Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.
doi: 10.1016/j.jde.2019.06.015. |
[9] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989. |
[10] |
P. E. Kloeden and J. A. Langa,
Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[11] |
P. E. Kloeden and T. Lorenz,
Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016. |
[12] |
M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988. |
[13] |
J. Pedlosky,
The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.
doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2. |
[14] |
J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar |
[15] |
R. M. Samelson, R. Temam and S. Wang,
Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.
doi: 10.1080/00036819808840682. |
[16] |
R. M. Samelson, R. Temam and S. Wang,
Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14.
|
[17] |
R. M. Samelson and G. K. Vallis,
A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.
doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2. |
[18] |
B. Schmalfuss,
Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.
doi: 10.1016/S0362-546X(96)00015-6. |
[19] |
A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965. |
[20] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[21] |
B. Wang,
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099. |
[23] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[24] |
B. Wang,
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.
doi: 10.1016/j.jde.2019.08.007. |
[25] |
B. Wang,
Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5. |
[26] |
B. You,
Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.
doi: 10.1080/17442508.2016.1276913. |
[27] |
B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831. Google Scholar |
[28] |
B. You and F. Li,
Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.
doi: 10.1080/07362994.2015.1126184. |
[1] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[2] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[3] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[4] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[5] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[6] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[7] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[8] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[9] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[10] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[11] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[12] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[13] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[14] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[15] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[16] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[17] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[18] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[19] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[20] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]