doi: 10.3934/dcds.2020332

Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China

Received  March 2020 Revised  August 2020 Published  September 2020

Fund Project: This work was supported by the National Science Foundation of China Grant (11401459, 11871389), the Natural Science Foundation of Shaanxi Province (2018JM1012) and the Fundamental Research Funds for the Central Universities (xjj2018088)

The objective of this paper is to study the well-posedness of solutions for the three dimensional planetary geostrophic equations of large-scale ocean circulation with additive noise. Since strong coupling terms and the noise term create some difficulties in the process of showing the existence of weak solutions, we will first show the existence of weak solutions by the monotonicity methods when the initial data satisfies some "regular" condition. For the case of general initial data, we will establish the existence of weak solutions by taking a sequence of "regular" initial data and proving the convergence in probability as well as some weak convergence of the corresponding solution sequences. Finally, we establish the existence of weak $ \mathcal{D} $-pullback mean random attractors in the framework developed in [11,25].

Citation: Bo You. Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020332
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[3]

Z. BrzeźniakE. Hausenblas and J. H. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.  Google Scholar

[4]

C. S. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.  doi: 10.1002/cpa.10056.  Google Scholar

[5]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[6]

Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp. doi: 10.1142/S0219493718500387.  Google Scholar

[7]

J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[8]

H. J. Gao and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.  doi: 10.1016/j.jde.2019.06.015.  Google Scholar

[9]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989.  Google Scholar

[10]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[11]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[12]

M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988.  Google Scholar

[13]

J. Pedlosky, The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.  doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2.  Google Scholar

[14]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[15]

R. M. SamelsonR. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.  doi: 10.1080/00036819808840682.  Google Scholar

[16]

R. M. SamelsonR. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14.   Google Scholar

[17]

R. M. Samelson and G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.  doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2.  Google Scholar

[18]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.  Google Scholar

[19]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[22]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.  Google Scholar

[23]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[24]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.  Google Scholar

[25]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.  Google Scholar

[26]

B. You, Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.  doi: 10.1080/17442508.2016.1276913.  Google Scholar

[27]

B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831. Google Scholar

[28]

B. You and F. Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.  doi: 10.1080/07362994.2015.1126184.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[3]

Z. BrzeźniakE. Hausenblas and J. H. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139.  doi: 10.1016/j.na.2012.10.011.  Google Scholar

[4]

C. S. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure and Appl. Math., 56 (2003), 198-233.  doi: 10.1002/cpa.10056.  Google Scholar

[5]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[6]

Z. Dong and R. R. Zhang, Long-time behavior of 3D stochastic planetary geostrophic viscous model,, Stoch. Dyn., 18 (2018), 1850038, 48pp. doi: 10.1142/S0219493718500387.  Google Scholar

[7]

J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.  doi: 10.1103/RevModPhys.57.617.  Google Scholar

[8]

H. J. Gao and H. Liu, Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise, J. Differential Equations, 267 (2019), 5938-5975.  doi: 10.1016/j.jde.2019.06.015.  Google Scholar

[9]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing, Tokyo, 1989.  Google Scholar

[10]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[11]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[12]

M. Metivier, Stochastic Partial Differential Equations in Infinite Dimensional Spaces, Quaderni, Scuola Normale Superiore di Pisa, 1988.  Google Scholar

[13]

J. Pedlosky, The equations for geostrophic motion in the ocean, Journal of Physical Oceanography, 14 (1984), 448-455.  doi: 10.1175/1520-0485(1984)014<0448:TEFGMI>2.0.CO;2.  Google Scholar

[14]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. Google Scholar

[15]

R. M. SamelsonR. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.  doi: 10.1080/00036819808840682.  Google Scholar

[16]

R. M. SamelsonR. Temam and S. Wang, Remarks on the planetary geostrophic model of gyre scale ocean circulation, Differential Integral Equations, 13 (2000), 1-14.   Google Scholar

[17]

R. M. Samelson and G. K. Vallis, A simple friction and diffusion scheme for planetary geostrophic basin models, Journal of Physical Oceanography, 27 (1997), 186-194.  doi: 10.1175/1520-0485(1997)027<0186:ASFADS>2.0.CO;2.  Google Scholar

[18]

B. Schmalfuss, Qualitative properties for the stochastic Navier-Stokes equation, Nonlinear Anal., 28 (1997), 1545-1563.  doi: 10.1016/S0362-546X(96)00015-6.  Google Scholar

[19]

A. V. Skorohod, Studies in the Theory of Random Processes, Addison-Wesley Publishing Co., Inc., Reading, Mass, 1965.  Google Scholar

[20]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[21]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[22]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp. doi: 10.1142/S0219493714500099.  Google Scholar

[23]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[24]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.  Google Scholar

[25]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.  Google Scholar

[26]

B. You, Random attractors for the three dimensional stochastical planetary geostrophic equations of large-scale ocean circulation, Stochastics, 89 (2017), 766-785.  doi: 10.1080/17442508.2016.1276913.  Google Scholar

[27]

B. You, Large deviation principle for the three dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, arXiv, (2020), 3312831. Google Scholar

[28]

B. You and F. Li, Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise, Stoch. Anal. Appl., 34 (2016), 278-292.  doi: 10.1080/07362994.2015.1126184.  Google Scholar

[1]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[2]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[3]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020266

[4]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[5]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[6]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[7]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[8]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[9]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[10]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[11]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020142

[12]

Elaine Cozzi, James P. Kelliher. Well-posedness of the 2D Euler equations when velocity grows at infinity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2361-2392. doi: 10.3934/dcds.2019100

[13]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[14]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[15]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[16]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020227

[17]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[18]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[19]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[20]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

2019 Impact Factor: 1.338

Article outline

[Back to Top]