doi: 10.3934/dcds.2020335

Recurrence for measurable semigroup actions

Institute for Information Transmission Problems RAS (Kharkevich Institute), National Research University "Higher School of Economics", Moscow, Russia

Received  January 2020 Revised  August 2020 Published  October 2020

We study qualitative properties of the set of recurrent points of finitely generated free semigroups of measurable maps. In the case of a single generator the classical Poincare recurrence theorem shows that these properties are closely related to the presence of an invariant measure. Curious, but otherwise it turns out to be possible that almost all points are recurrent, while there is an wandering set of positive (non-invariant) measure. For a general semigroup the assumption about the common invariant measure for all generators looks somewhat unnatural (despite being widely used). Instead we give abstract conditions (of conservativity type) for this problem and propose a weaker version of the recurrent property. Technically, the problem is reduced to the analysis of the recurrence of a specially constructed Markov process. Questions of inheritance of the recurrence property from the semigroup generators to the entire semigroup and vice versa are studied in detail and we demonstrate that this inheritance might be rather unexpected.

Citation: Michael Blank. Recurrence for measurable semigroup actions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020335
References:
[1]

M. Blank, Topological and metric recurrence for general Markov chains, Moscow Math. J., 19 (2019), 37-50.  doi: 10.17323/1609-4514-2019-19-1-37-50.  Google Scholar

[2]

M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344.  doi: 10.17323/1609-4514-2001-1-3-315-344.  Google Scholar

[3]

M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.  doi: 10.1007/BF01244320.  Google Scholar

[4]

M. BoshernitzanN. Frantzikinakis and M. Wierdl, Under recurrence in the Khintchine recurrence theorem, Isr. J. Math., 222 (2017), 815-840.  doi: 10.1007/s11856-017-1606-8.  Google Scholar

[5]

M. CarvalhoF. B. Rodrigues and P. Varandas, Quantitative recurrence for free semigroup actions, Nonlinearity, 31 (2018), 864-886.  doi: 10.1088/1361-6544/aa999f.  Google Scholar

[6]

L. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, New York: Springer-Verlag, 1982. doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[7]

W. Feller, An Introduction to Probability Theory and its Applications, V.1, Wiley, 1966.  Google Scholar

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.   Google Scholar
[9]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, Anal. Math., 31 (1977), 204-256.  doi: 10.1007/BF02813304.  Google Scholar

[10]

P. R. Halmos, Invariant Measures, Annals of Mathematics, 48 (1947), 735-754.  doi: 10.2307/1969138.  Google Scholar

[11]

Kim Dong Han, Quantitative recurrence properties for group actions, Nonlinearity, 22 (2009), 1-9.  doi: 10.1088/0951-7715/22/1/001.  Google Scholar

[12]

U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, de Gruyter, Berlin-New York, 1985. doi: 10.1515/9783110844641.  Google Scholar

[13]

R. McCutcheon, N. Frantzikinakis, Ergodic Theory: Recurrence, Encyclopedia of Complexity and Systems Science 2007. doi: 10.1007/978-0-387-30440-3_184.  Google Scholar

[14]

S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993. doi: 10.1007/978-1-4471-3267-7.  Google Scholar

[15] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, Cambridge (Mass.): The MIT Press, 1971.   Google Scholar
[16]

S. Orey, Recurrent Markov chains, Pacific Journal of Mathematics, 9 (1959), 806-827.  doi: 10.2140/pjm.1959.9.805.  Google Scholar

[17]

V. Spitzer, Principles of Random Walk, Springer-Verlag New York, 1964. doi: 10.1007/978-1-4757-4229-9.  Google Scholar

[18]

A. M. Vershik, What does a typical Markov operator look like?, St. Petersburg Math. J., 17 (2006), 763-772.  doi: 10.1090/S1061-0022-06-00928-9.  Google Scholar

[19]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

show all references

References:
[1]

M. Blank, Topological and metric recurrence for general Markov chains, Moscow Math. J., 19 (2019), 37-50.  doi: 10.17323/1609-4514-2019-19-1-37-50.  Google Scholar

[2]

M. Blank, Perron-Frobenius spectrum for random maps and its approximation, Moscow Math. J., 1 (2001), 315-344.  doi: 10.17323/1609-4514-2001-1-3-315-344.  Google Scholar

[3]

M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.  doi: 10.1007/BF01244320.  Google Scholar

[4]

M. BoshernitzanN. Frantzikinakis and M. Wierdl, Under recurrence in the Khintchine recurrence theorem, Isr. J. Math., 222 (2017), 815-840.  doi: 10.1007/s11856-017-1606-8.  Google Scholar

[5]

M. CarvalhoF. B. Rodrigues and P. Varandas, Quantitative recurrence for free semigroup actions, Nonlinearity, 31 (2018), 864-886.  doi: 10.1088/1361-6544/aa999f.  Google Scholar

[6]

L. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic Theory, New York: Springer-Verlag, 1982. doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[7]

W. Feller, An Introduction to Probability Theory and its Applications, V.1, Wiley, 1966.  Google Scholar

[8] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.   Google Scholar
[9]

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, Anal. Math., 31 (1977), 204-256.  doi: 10.1007/BF02813304.  Google Scholar

[10]

P. R. Halmos, Invariant Measures, Annals of Mathematics, 48 (1947), 735-754.  doi: 10.2307/1969138.  Google Scholar

[11]

Kim Dong Han, Quantitative recurrence properties for group actions, Nonlinearity, 22 (2009), 1-9.  doi: 10.1088/0951-7715/22/1/001.  Google Scholar

[12]

U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics 6, de Gruyter, Berlin-New York, 1985. doi: 10.1515/9783110844641.  Google Scholar

[13]

R. McCutcheon, N. Frantzikinakis, Ergodic Theory: Recurrence, Encyclopedia of Complexity and Systems Science 2007. doi: 10.1007/978-0-387-30440-3_184.  Google Scholar

[14]

S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 1993. doi: 10.1007/978-1-4471-3267-7.  Google Scholar

[15] Z. Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, Cambridge (Mass.): The MIT Press, 1971.   Google Scholar
[16]

S. Orey, Recurrent Markov chains, Pacific Journal of Mathematics, 9 (1959), 806-827.  doi: 10.2140/pjm.1959.9.805.  Google Scholar

[17]

V. Spitzer, Principles of Random Walk, Springer-Verlag New York, 1964. doi: 10.1007/978-1-4757-4229-9.  Google Scholar

[18]

A. M. Vershik, What does a typical Markov operator look like?, St. Petersburg Math. J., 17 (2006), 763-772.  doi: 10.1090/S1061-0022-06-00928-9.  Google Scholar

[19]

L.-S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

Figure 1.  Graphs of the maps $ T_i $ in the Example 5
Figure 2.  Graphs of the maps $ T_i $ in the Example 6
Figure 3.  Graphs of the maps $ T_i $ in the Example 7
[1]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[2]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[3]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[4]

Jean René Chazottes, F. Durand. Local rates of Poincaré recurrence for rotations and weak mixing. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 175-183. doi: 10.3934/dcds.2005.12.175

[5]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[6]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[7]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[8]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[9]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[10]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[11]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[12]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[13]

L. Cioletti, E. Silva, M. Stadlbauer. Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6277-6298. doi: 10.3934/dcds.2019274

[14]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[15]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[16]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[17]

Peter E. Kloeden, Victor Kozyakin. Asymptotic behaviour of random tridiagonal Markov chains in biological applications. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 453-465. doi: 10.3934/dcdsb.2013.18.453

[18]

Mark F. Demers, Christopher J. Ianzano, Philip Mayer, Peter Morfe, Elizabeth C. Yoo. Limiting distributions for countable state topological Markov chains with holes. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 105-130. doi: 10.3934/dcds.2017005

[19]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[20]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (11)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]