doi: 10.3934/dcds.2020336

Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance

1. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China, Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

* Corresponding author: Feng-Yu Wang

Received  March 2020 Revised  July 2020 Published  October 2020

Fund Project: Supported in part by NNSFC (11771326, 11831014, 11801406, 11921001)

Existence and uniqueness are proved for McKean-Vlasov type distribution dependent SDEs with singular drifts satisfying an integrability condition in space variable and the Lipschitz condition in distribution variable with respect to $ {\mathbb W}_0 $ or $ {\mathbb W}_0+{\mathbb W}_\theta $ for some $ \theta\ge 1 $, where $ {\mathbb W}_0 $ is the total variation distance and $ {\mathbb W}_\theta $ is the $ L^\theta $-Wasserstein distance. This improves some existing results (see for instance [13]) derived for drifts continuous in the distribution variable with respect to the Wasserstein distance.

Citation: Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020336
References:
[1]

V. Barbu and M. Röckner, Probabilistic representation for solutions to non-linear Fokker-Planck equations, SIAM J. Math. Anal., 50 (2018), 4246-4260.  doi: 10.1137/17M1162780.  Google Scholar

[2]

V. Barbu and M. Röckner, From non-linear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Probab., 48 (2020), 1902-1920.  doi: 10.1214/19-AOP1410.  Google Scholar

[3]

M. Bauer and T. M-Brandis, Existence and regularity of solutions to multi-dimensional mean-field stochastic differential equations with irregular drift, arXiv: 1912.05932. Google Scholar

[4]

M. Bauer, T. M-Brandis and F. Proske, Strong solutions of mean-field stochastic differential equations with irregular drift, Electron. J. Probab., 23 (2018), 35 pp. doi: 10.1214/18-EJP259.  Google Scholar

[5]

K. Carrapatoso, Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[6]

P. E. Chaudru de Raynal, Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift, Stoch. Process Appl., 130 (2020), 79-107.  doi: 10.1016/j.spa.2019.01.006.  Google Scholar

[7]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.  doi: 10.1515/CRELLE.2008.016.  Google Scholar

[8]

L. Campi and M. Fischer, $N$-player games and mean-field games with absorption, Ann. Appl. Probab., 28 (2016), 2188-2242.  doi: 10.1214/17-AAP1354.  Google Scholar

[9] I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.   Google Scholar
[10]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part I: existence, uniqueness and smothness, Comm. Part. Diff. Equat., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[11]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, part II: H-theorem and applications, Comm. Part. Diff. Equat., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[12]

X. HuangM. Röckner and F.-Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, Discrete Contin. Dyn. Syst., 39 (2019), 3017-3035.  doi: 10.3934/dcds.2019125.  Google Scholar

[13]

X. Huang and F.-Y. Wang, Distribution dependent SDEs with singular coefficients, Stoch. Process Appl., 129 (2019), 4747-4770.  doi: 10.1016/j.spa.2018.12.012.  Google Scholar

[14]

B. Jourdain, Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers' equations, ESAIM Probab. Statist., 1 (1997), 339-355.  doi: 10.1051/ps:1997113.  Google Scholar

[15]

B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 727-766.  doi: 10.1016/S0246-0203(99)80002-8.  Google Scholar

[16]

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, 131 (2005), 154-196.  doi: 10.1007/s00440-004-0361-z.  Google Scholar

[17]

D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations, Electron. Commun. Probab., 23 (2018), 11 pp. doi: 10.1214/18-ECP150.  Google Scholar

[18]

Y. S. Mishura and A. Y. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, preprint, arXiv: 1603.02212. Google Scholar

[19]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[20]

M. Röckner and X. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, preprint, arXiv: 1809.02216. Google Scholar

[21]

A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Sain-Flour XIX-1989, Lecture Notes in Mathematics, 1464, Springer, Berlin, 1991,165–251. doi: 10.1007/BFb0085169.  Google Scholar

[22]

F.-Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792-2829.  doi: 10.1016/j.jde.2015.10.020.  Google Scholar

[23]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.  doi: 10.1016/j.spa.2017.05.006.  Google Scholar

[24]

L. Xie and X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coefficients, Ann. Inst. H. Poincaré Probab. Statist., 56 (2020), 175-229.  doi: 10.1214/19-AIHP959.  Google Scholar

[25]

C. G. Yuan and S.-Q. Zhang, A study on Zvonkin's transformation for stochastic differential equations with singular drift and related applications, preprint, arXiv: 1910.05903. Google Scholar

[26]

P. Xia, L. Xie, X. Zhang and G. Zhao, $L^q$($L^p$)-theory of stochastic differential equations, doi: 10.1016/j.spa.2020.03.004.  Google Scholar

[27]

X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16 (2011), 1096-1116.  doi: 10.1214/EJP.v16-887.  Google Scholar

[28]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129-149.   Google Scholar

show all references

References:
[1]

V. Barbu and M. Röckner, Probabilistic representation for solutions to non-linear Fokker-Planck equations, SIAM J. Math. Anal., 50 (2018), 4246-4260.  doi: 10.1137/17M1162780.  Google Scholar

[2]

V. Barbu and M. Röckner, From non-linear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Probab., 48 (2020), 1902-1920.  doi: 10.1214/19-AOP1410.  Google Scholar

[3]

M. Bauer and T. M-Brandis, Existence and regularity of solutions to multi-dimensional mean-field stochastic differential equations with irregular drift, arXiv: 1912.05932. Google Scholar

[4]

M. Bauer, T. M-Brandis and F. Proske, Strong solutions of mean-field stochastic differential equations with irregular drift, Electron. J. Probab., 23 (2018), 35 pp. doi: 10.1214/18-EJP259.  Google Scholar

[5]

K. Carrapatoso, Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[6]

P. E. Chaudru de Raynal, Strong well-posedness of McKean-Vlasov stochastic differential equation with Hölder drift, Stoch. Process Appl., 130 (2020), 79-107.  doi: 10.1016/j.spa.2019.01.006.  Google Scholar

[7]

G. Crippa and C. De Lellis, Estimates and regularity results for the DiPerna-Lions flow, J. Reine Angew. Math., 616 (2008), 15-46.  doi: 10.1515/CRELLE.2008.016.  Google Scholar

[8]

L. Campi and M. Fischer, $N$-player games and mean-field games with absorption, Ann. Appl. Probab., 28 (2016), 2188-2242.  doi: 10.1214/17-AAP1354.  Google Scholar

[9] I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.   Google Scholar
[10]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part I: existence, uniqueness and smothness, Comm. Part. Diff. Equat., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[11]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, part II: H-theorem and applications, Comm. Part. Diff. Equat., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[12]

X. HuangM. Röckner and F.-Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, Discrete Contin. Dyn. Syst., 39 (2019), 3017-3035.  doi: 10.3934/dcds.2019125.  Google Scholar

[13]

X. Huang and F.-Y. Wang, Distribution dependent SDEs with singular coefficients, Stoch. Process Appl., 129 (2019), 4747-4770.  doi: 10.1016/j.spa.2018.12.012.  Google Scholar

[14]

B. Jourdain, Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers' equations, ESAIM Probab. Statist., 1 (1997), 339-355.  doi: 10.1051/ps:1997113.  Google Scholar

[15]

B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 727-766.  doi: 10.1016/S0246-0203(99)80002-8.  Google Scholar

[16]

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields, 131 (2005), 154-196.  doi: 10.1007/s00440-004-0361-z.  Google Scholar

[17]

D. Lacker, On a strong form of propagation of chaos for McKean-Vlasov equations, Electron. Commun. Probab., 23 (2018), 11 pp. doi: 10.1214/18-ECP150.  Google Scholar

[18]

Y. S. Mishura and A. Y. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, preprint, arXiv: 1603.02212. Google Scholar

[19]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[20]

M. Röckner and X. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, preprint, arXiv: 1809.02216. Google Scholar

[21]

A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Sain-Flour XIX-1989, Lecture Notes in Mathematics, 1464, Springer, Berlin, 1991,165–251. doi: 10.1007/BFb0085169.  Google Scholar

[22]

F.-Y. Wang, Gradient estimate and applications for SDEs in Hilbert space with multiplicative noise and Dini continuous drift, J. Differential Equations, 260 (2016), 2792-2829.  doi: 10.1016/j.jde.2015.10.020.  Google Scholar

[23]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.  doi: 10.1016/j.spa.2017.05.006.  Google Scholar

[24]

L. Xie and X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coefficients, Ann. Inst. H. Poincaré Probab. Statist., 56 (2020), 175-229.  doi: 10.1214/19-AIHP959.  Google Scholar

[25]

C. G. Yuan and S.-Q. Zhang, A study on Zvonkin's transformation for stochastic differential equations with singular drift and related applications, preprint, arXiv: 1910.05903. Google Scholar

[26]

P. Xia, L. Xie, X. Zhang and G. Zhao, $L^q$($L^p$)-theory of stochastic differential equations, doi: 10.1016/j.spa.2020.03.004.  Google Scholar

[27]

X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electron. J. Probab., 16 (2011), 1096-1116.  doi: 10.1214/EJP.v16-887.  Google Scholar

[28]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Math. Sb., 93 (1974), 129-149.   Google Scholar

[1]

Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

[2]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[3]

José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921

[4]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[5]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[6]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020046

[7]

Mario Roy. A new variation of Bowen's formula for graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2533-2551. doi: 10.3934/dcds.2012.32.2533

[8]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[9]

Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems & Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191

[10]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[11]

Chun-Xiang Guo, Guo Qiang, Jin Mao-Zhu, Zhihan Lv. Dynamic systems based on preference graph and distance. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1139-1154. doi: 10.3934/dcdss.2015.8.1139

[12]

Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015

[13]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[14]

Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electronic Research Announcements, 2014, 21: 1-7. doi: 10.3934/era.2014.21.1

[15]

Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas. Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Problems & Imaging, 2007, 1 (1) : 135-157. doi: 10.3934/ipi.2007.1.135

[16]

Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273

[17]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020038

[18]

Xin Yang Lu. Regularity of densities in relaxed and penalized average distance problem. Networks & Heterogeneous Media, 2015, 10 (4) : 837-855. doi: 10.3934/nhm.2015.10.837

[19]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[20]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

2019 Impact Factor: 1.338

Article outline

[Back to Top]