doi: 10.3934/dcds.2020337

Global stability in a multi-dimensional predator-prey system with prey-taxis

Department of Mathematics, South China University of Technology, Guangzhou 510641, China

* Corresponding author: shuxuelidandan@163.com

Received  March 2020 Revised  August 2020 Published  October 2020

Fund Project: The first author is supported by NSF grant 12001201

This paper studies the predator-prey systems with prey-taxis
$ \begin{eqnarray*} { \label{1.1}} \left\{ \begin{array}{llll} u_{t} = \Delta u-\chi\nabla\cdot(u\nabla v)+\gamma uv-\rho u, \\ v_{t} = \Delta v-\xi uv+\mu v(1-v), \ \end{array} \right. \end{eqnarray*} $
in a bounded domain
$ \Omega\subset\mathbb{R}^{n} $
$ (n = 2, 3) $
with Neumann boundary conditions, where the parameters
$ \chi $
,
$ \gamma $
,
$ \rho $
,
$ \xi $
and
$ \mu $
are positive. It is shown that the two-dimensional system possesses a unique global-bounded classical solution. Furthermore, we use some higher-order estimates to obtain the classical solutions with uniform-in-time bounded for suitably small initial data. Finally, we establish that the solution stabilizes towards the prey-only steady state
$ (0, 1) $
if
$ \rho>\gamma $
and towards the co-existence steady state
$ (\frac{\mu(\gamma-\rho)}{\xi\rho}, \frac{\rho}{\gamma}) $
if
$ \gamma>\rho $
under some conditions in the norm of
$ L^{\infty}(\Omega) $
as
$ t\rightarrow\infty $
.
Citation: Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020337
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Text in Math. Teubner, Stuttgart, 133 (1993), 9-126.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete. Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[4]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[5]

T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci, 24 (1997), 633-683.   Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

J. JiangH. Wu and S. Zheng, Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, J. Differential Equations, 12 (2001), 159-177.  doi: 10.1016/j.jde.2018.01.004.  Google Scholar

[10]

H.-Y Jin and Z. A. Wang, Global stability of prey-taxis system, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[11]

H.-Y Jin and Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Euro. J. Appl. Math., (2019). Google Scholar

[12]

A. JüngelC. Kuehn and L. Trussardi, A meeting point of entropy and bifurcations in cross-diffusion herding, European J. Appl. Math., 28 (2017), 317-356.  doi: 10.1017/S0956792516000346.  Google Scholar

[13]

A. Jüngel, Diffusive and Nondiffusive Population Models. Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010,397–425. doi: 10.1007/978-0-8176-4946-3_15.  Google Scholar

[14]

P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use arearestricted search, Amer. Nat., 130 (1987), 233-270.   Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[16]

O. A. Ladyzenskaja, V. A. Solonnikov and N. Nral'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23, Providence, RI, 1968. Google Scholar

[17]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[18]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint, 2013. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[20]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domain of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemootaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[23]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusivle attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[24]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[25]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[27]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Text in Math. Teubner, Stuttgart, 133 (1993), 9-126.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete. Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.  Google Scholar

[4]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[5]

T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.  doi: 10.1006/aama.2001.0721.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci, 24 (1997), 633-683.   Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[9]

J. JiangH. Wu and S. Zheng, Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, J. Differential Equations, 12 (2001), 159-177.  doi: 10.1016/j.jde.2018.01.004.  Google Scholar

[10]

H.-Y Jin and Z. A. Wang, Global stability of prey-taxis system, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.  Google Scholar

[11]

H.-Y Jin and Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Euro. J. Appl. Math., (2019). Google Scholar

[12]

A. JüngelC. Kuehn and L. Trussardi, A meeting point of entropy and bifurcations in cross-diffusion herding, European J. Appl. Math., 28 (2017), 317-356.  doi: 10.1017/S0956792516000346.  Google Scholar

[13]

A. Jüngel, Diffusive and Nondiffusive Population Models. Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010,397–425. doi: 10.1007/978-0-8176-4946-3_15.  Google Scholar

[14]

P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use arearestricted search, Amer. Nat., 130 (1987), 233-270.   Google Scholar

[15]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[16]

O. A. Ladyzenskaja, V. A. Solonnikov and N. Nral'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23, Providence, RI, 1968. Google Scholar

[17]

J. M. LeeT. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.  Google Scholar

[18]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint, 2013. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[20]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domain of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemootaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[23]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusivle attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.  Google Scholar

[24]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.  Google Scholar

[25]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.  Google Scholar

[27]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[1]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[2]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[3]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[6]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[7]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[8]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[9]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[12]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[13]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[18]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[19]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[20]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (124)
  • Cited by (0)

Other articles
by authors

[Back to Top]