-
Previous Article
Integral equations on compact CR manifolds
- DCDS Home
- This Issue
-
Next Article
Forward untangling and applications to the uniqueness problem for the continuity equation
Global stability in a multi-dimensional predator-prey system with prey-taxis
Department of Mathematics, South China University of Technology, Guangzhou 510641, China |
$ \begin{eqnarray*} { \label{1.1}} \left\{ \begin{array}{llll} u_{t} = \Delta u-\chi\nabla\cdot(u\nabla v)+\gamma uv-\rho u, \\ v_{t} = \Delta v-\xi uv+\mu v(1-v), \ \end{array} \right. \end{eqnarray*} $ |
$ \Omega\subset\mathbb{R}^{n} $ |
$ (n = 2, 3) $ |
$ \chi $ |
$ \gamma $ |
$ \rho $ |
$ \xi $ |
$ \mu $ |
$ (0, 1) $ |
$ \rho>\gamma $ |
$ (\frac{\mu(\gamma-\rho)}{\xi\rho}, \frac{\rho}{\gamma}) $ |
$ \gamma>\rho $ |
$ L^{\infty}(\Omega) $ |
$ t\rightarrow\infty $ |
References:
[1] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
H. Amann,
Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Text in Math. Teubner, Stuttgart, 133 (1993), 9-126.
doi: 10.1007/978-3-663-11336-2_1. |
[3] |
C. Cosner,
Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete. Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701. |
[4] |
H. Gajewski and K. Zacharias,
Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[5] |
T. Hillen and K. J. Painter,
Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.
doi: 10.1006/aama.2001.0721. |
[6] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci, 24 (1997), 633-683.
|
[7] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[8] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[9] |
J. Jiang, H. Wu and S. Zheng,
Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, J. Differential Equations, 12 (2001), 159-177.
doi: 10.1016/j.jde.2018.01.004. |
[10] |
H.-Y Jin and Z. A. Wang,
Global stability of prey-taxis system, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010. |
[11] |
H.-Y Jin and Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Euro. J. Appl. Math., (2019). Google Scholar |
[12] |
A. Jüngel, C. Kuehn and L. Trussardi,
A meeting point of entropy and bifurcations in cross-diffusion herding, European J. Appl. Math., 28 (2017), 317-356.
doi: 10.1017/S0956792516000346. |
[13] |
A. Jüngel, Diffusive and Nondiffusive Population Models. Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010,397–425.
doi: 10.1007/978-0-8176-4946-3_15. |
[14] |
P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use arearestricted search, Amer. Nat., 130 (1987), 233-270. Google Scholar |
[15] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[16] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. Nral'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23, Providence, RI, 1968. Google Scholar |
[17] |
J. M. Lee, T. Hillen and M. A. Lewis,
Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.
doi: 10.1080/17513750802716112. |
[18] |
N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint, 2013.
doi: 10.1016/j.matpur.2013.01.020. |
[19] |
Y. Tao,
Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[20] |
Y. Tao and M. Winkler,
Global smooth solvability of a parabolic-elliptic nutrient taxis system in domain of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.
doi: 10.1016/j.jde.2019.01.014. |
[21] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[22] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemootaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[23] |
Y. Tao and M. Winkler,
Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusivle attractant, J. Differential Equations, 257 (2014), 784-815.
doi: 10.1016/j.jde.2014.04.014. |
[24] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[25] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[26] |
M. Winkler,
Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002. |
[27] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
show all references
References:
[1] |
N. D. Alikakos,
$L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
H. Amann,
Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Text in Math. Teubner, Stuttgart, 133 (1993), 9-126.
doi: 10.1007/978-3-663-11336-2_1. |
[3] |
C. Cosner,
Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete. Contin. Dyn. Syst., 34 (2014), 1701-1745.
doi: 10.3934/dcds.2014.34.1701. |
[4] |
H. Gajewski and K. Zacharias,
Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[5] |
T. Hillen and K. J. Painter,
Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.
doi: 10.1006/aama.2001.0721. |
[6] |
M. A. Herrero and J. J. L. Velázquez,
A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci, 24 (1997), 633-683.
|
[7] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[8] |
D. Horstmann and G. Wang,
Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.
doi: 10.1017/S0956792501004363. |
[9] |
J. Jiang, H. Wu and S. Zheng,
Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, J. Differential Equations, 12 (2001), 159-177.
doi: 10.1016/j.jde.2018.01.004. |
[10] |
H.-Y Jin and Z. A. Wang,
Global stability of prey-taxis system, J. Differential Equations, 262 (2017), 1257-1290.
doi: 10.1016/j.jde.2016.10.010. |
[11] |
H.-Y Jin and Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Euro. J. Appl. Math., (2019). Google Scholar |
[12] |
A. Jüngel, C. Kuehn and L. Trussardi,
A meeting point of entropy and bifurcations in cross-diffusion herding, European J. Appl. Math., 28 (2017), 317-356.
doi: 10.1017/S0956792516000346. |
[13] |
A. Jüngel, Diffusive and Nondiffusive Population Models. Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010,397–425.
doi: 10.1007/978-0-8176-4946-3_15. |
[14] |
P. Kareiva and G. Odell, Swarms of predators exhibit 'preytaxis' if individual predators use arearestricted search, Amer. Nat., 130 (1987), 233-270. Google Scholar |
[15] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[16] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. Nral'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc. Transl., 23, Providence, RI, 1968. Google Scholar |
[17] |
J. M. Lee, T. Hillen and M. A. Lewis,
Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.
doi: 10.1080/17513750802716112. |
[18] |
N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint, 2013.
doi: 10.1016/j.matpur.2013.01.020. |
[19] |
Y. Tao,
Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[20] |
Y. Tao and M. Winkler,
Global smooth solvability of a parabolic-elliptic nutrient taxis system in domain of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.
doi: 10.1016/j.jde.2019.01.014. |
[21] |
Y. Tao and M. Winkler,
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[22] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemootaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[23] |
Y. Tao and M. Winkler,
Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusivle attractant, J. Differential Equations, 257 (2014), 784-815.
doi: 10.1016/j.jde.2014.04.014. |
[24] |
J. I. Tello and D. Wrzosek,
Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.
doi: 10.1142/S0218202516400108. |
[25] |
M. Winkler,
Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[26] |
M. Winkler,
Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.
doi: 10.1016/j.jde.2017.06.002. |
[27] |
M. Winkler,
Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[1] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[2] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[3] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[4] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[5] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[6] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[7] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[8] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[9] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[10] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[11] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[12] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[13] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[14] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[15] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[16] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[17] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[18] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[19] |
Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284 |
[20] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]