
-
Previous Article
Strichartz estimates and local regularity for the elastic wave equation with singular potentials
- DCDS Home
- This Issue
-
Next Article
Spatial dynamics and optimization method for a network propagation model in a shifting environment
Reversible perturbations of conservative Hénon-like maps
1. | Universitat Politècnica de Catalunya, Barcelona, Spain |
2. | Mathematical Center "Mathematics of Future Technologies", Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia |
3. | Laboratory of Dynamical Systems and Applications, National Research University Higher School of Economics, Nizhny Novgorod, Russia |
For area-preserving Hénon-like maps and their compositions, we consider smooth perturbations that keep the reversibility of the initial maps but destroy their conservativity. For constructing such perturbations, we use two methods, a new method based on reversible properties of maps written in the so-called cross-form, and the classical Quispel-Roberts method based on a variation of involutions of the initial map. We study symmetry breaking bifurcations of symmetric periodic orbits in reversible families containing quadratic conservative orientable and nonorientable Hénon maps as well as a product of two Hénon maps whose Jacobians are mutually inverse.
References:
[1] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2$^nd$ edition, Springer-Verlag, NY, 1996.
doi: 10.1007/978-1-4612-1037-5. |
[2] |
V. S. Biragov,
Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon mapping, Selecta Math. Soviet, 9 (1990), 273-282.
|
[3] |
R. L. Devaney,
Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lazaro and O. Sten'kin,
Abundance of attracting, repelling and elliptic orbits in two-dimensional reversible maps, Nonlinearity, 26 (2013), 1-33.
doi: 10.1088/0951-7715/26/1/1. |
[5] |
A. Delshams, M. Gonchenko, S. V. Gonchenko and and J. T. Lazaro,
Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies, Discrete Contin. Dyn. Syst., 38 (2018), 4483-4507.
doi: 10.3934/dcds.2018196. |
[6] |
A. A. Emelianova, V. I. Nekorkin, On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators, Chaos, 29 (2019), 111102.
doi: 10.1063/1.5130994. |
[7] |
A. A. Emelianova, V. I. Nekorkin, The third type of chaos in a system of two adaptively coupled phase oscillators, Chaos, 30 (2020), 051105.
doi: 10.1063/5.0009525. |
[8] |
A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev,
On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators, Phys. D, 350 (2017), 45-57.
doi: 10.1016/j.physd.2017.02.002. |
[9] |
M. Gonchenko, S. Gonchenko and I. Ovsyannikov,
Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, Math. Model. Nat. Phenom., 12 (2017), 41-61.
doi: 10.1051/mmnp/201712104. |
[10] |
S. Gonchenko,
Reversible mixed dynamics: A concept and examples, Discontinuity, Nonlinearity, and Complexity, 5 (2016), 345-354.
doi: 10.5890/DNC.2016.12.003. |
[11] |
M. S. Gonchenko, A. O. Kazakov, E. A. Samylina and A. I. Shyhmamedov, On the 1: 3 resonance under reversible perturbations of conservative cubic Hénon maps, preprint, 2020. |
[12] |
S. V. Gonchenko and D. V. Turaev,
On three types of dynamics and the notion of attractor, Proc. Steklov Inst. Math., 297 (2017), 116-137.
doi: 10.1134/S0371968517020078. |
[13] |
S. V. Gonchenko, A. S. Gonchenko and A. O. Kazakov,
Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regu. Chaotic Dyn., 18 (2013), 521-538.
doi: 10.1134/S1560354713050055. |
[14] |
S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov,
On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Dokl. Math., 47 (1993), 268-273.
|
[15] |
S. V. Gonchenko, D. V. Turaev and L. P. Shil'nikov,
On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour, Proc. Steklov Inst. Math., 216 (1997), 70-118.
|
[16] |
S. V. Gonchenko, J. S. V. Lèmb, I. Rios and D. Turaev,
Attractors and repellers in the neighborhood of elliptic points of reversible systems, Dokl. Math., 89 (2014), 65-67.
|
[17] |
S. V. Gonchenko, M. S. Gonchenko and I. O. Sinitsky,
On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles, Izv. Ross. Akad. Nauk Ser. Mat., 84 (2020), 27-59.
doi: 10.4213/im8786. |
[18] |
A. O. Kazakov,
On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems, Radiophysics and Quantum Electronics, 61 (2019), 650-658.
doi: 10.1007/s11141-019-09925-6. |
[19] |
A. O. Kazakov, Merger of a Hénon-like attractor with a Hńon-like repeller in a model of vortex dynamics, Chaos, 30 (2020), 011105.
doi: 10.1063/1.5144144. |
[20] |
J. S. W. Lamb and J. A. G. Roberts,
Time-reversal symmetry in dynamical systems: A survey, Phys. D, 112 (1998), 1-39.
doi: 10.1016/S0167-2789(97)00199-1. |
[21] |
J. S. W. Lamb and O. V. Stenkin,
Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits, Nonlinearity, 17 (2004), 1217-1244.
doi: 10.1088/0951-7715/17/4/005. |
[22] |
L. M. Lerman and D. V. Turaev,
Breakdown of symmetry in reversible systems, Reg. Chaotic Dyn., 17 (2012), 318-336.
doi: 10.1134/S1560354712030082. |
[23] |
S. E. Newhouse,
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101-151.
|
[24] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[25] |
J. Palis and M. Viana,
High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 2, 140 (1994), 207-250.
doi: 10.2307/2118546. |
[26] |
A. Politi, G. L. Oppo and R. Badii,
Coexistence of conservative and dissipative behaviour in reversible dynamicla systems, Phys. Rev. A, 33 (1986), 4055-4060.
|
[27] |
T. Post, H. W. Capel, G. R. W. Quispel and J. R. van der Weele,
Bifurcations in two-dimensional reversible maps, Phys. A, 164 (1990), 625-662.
doi: 10.1016/0378-4371(90)90226-I. |
[28] |
J. A. G. Roberts and G. R. W. Quispel,
Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.
doi: 10.1016/0370-1573(92)90163-T. |
[29] |
N. Romero,
Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynam. Systems., 15 (1995), 735-757.
doi: 10.1017/S0143385700008634. |
[30] |
D. Ruelle,
Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.
doi: 10.1007/BF01206949. |
[31] |
D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley Publishing Co., Reading, MA, 1978. |
[32] |
M. B. Sevryuk, Reversible Systems, Lect. Notes Math., Vol. 1211, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0075877. |
[33] |
C. Simó and A. Vieiro,
Resonant zones, inner and outer splitting in generic and low order resonances of area preserving maps, Nonlinearity, 22 (2009), 1191-1245.
doi: 10.1088/0951-7715/22/5/012. |
[34] |
D. Turaev,
Richness of chaos in the absolute Newhouse domain, in Proc. Int. Congr. Math., Hyderabad (India), 3 (2010), 1804-1815.
|
[35] |
D. Turaev,
Maps close to identity and universal maps in the Newhouse domain, Commun. Math. Phys., 335 (2015), 1235-1277.
doi: 10.1007/s00220-015-2338-4. |
show all references
References:
[1] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2$^nd$ edition, Springer-Verlag, NY, 1996.
doi: 10.1007/978-1-4612-1037-5. |
[2] |
V. S. Biragov,
Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon mapping, Selecta Math. Soviet, 9 (1990), 273-282.
|
[3] |
R. L. Devaney,
Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lazaro and O. Sten'kin,
Abundance of attracting, repelling and elliptic orbits in two-dimensional reversible maps, Nonlinearity, 26 (2013), 1-33.
doi: 10.1088/0951-7715/26/1/1. |
[5] |
A. Delshams, M. Gonchenko, S. V. Gonchenko and and J. T. Lazaro,
Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies, Discrete Contin. Dyn. Syst., 38 (2018), 4483-4507.
doi: 10.3934/dcds.2018196. |
[6] |
A. A. Emelianova, V. I. Nekorkin, On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators, Chaos, 29 (2019), 111102.
doi: 10.1063/1.5130994. |
[7] |
A. A. Emelianova, V. I. Nekorkin, The third type of chaos in a system of two adaptively coupled phase oscillators, Chaos, 30 (2020), 051105.
doi: 10.1063/5.0009525. |
[8] |
A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev,
On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators, Phys. D, 350 (2017), 45-57.
doi: 10.1016/j.physd.2017.02.002. |
[9] |
M. Gonchenko, S. Gonchenko and I. Ovsyannikov,
Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, Math. Model. Nat. Phenom., 12 (2017), 41-61.
doi: 10.1051/mmnp/201712104. |
[10] |
S. Gonchenko,
Reversible mixed dynamics: A concept and examples, Discontinuity, Nonlinearity, and Complexity, 5 (2016), 345-354.
doi: 10.5890/DNC.2016.12.003. |
[11] |
M. S. Gonchenko, A. O. Kazakov, E. A. Samylina and A. I. Shyhmamedov, On the 1: 3 resonance under reversible perturbations of conservative cubic Hénon maps, preprint, 2020. |
[12] |
S. V. Gonchenko and D. V. Turaev,
On three types of dynamics and the notion of attractor, Proc. Steklov Inst. Math., 297 (2017), 116-137.
doi: 10.1134/S0371968517020078. |
[13] |
S. V. Gonchenko, A. S. Gonchenko and A. O. Kazakov,
Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regu. Chaotic Dyn., 18 (2013), 521-538.
doi: 10.1134/S1560354713050055. |
[14] |
S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov,
On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Dokl. Math., 47 (1993), 268-273.
|
[15] |
S. V. Gonchenko, D. V. Turaev and L. P. Shil'nikov,
On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour, Proc. Steklov Inst. Math., 216 (1997), 70-118.
|
[16] |
S. V. Gonchenko, J. S. V. Lèmb, I. Rios and D. Turaev,
Attractors and repellers in the neighborhood of elliptic points of reversible systems, Dokl. Math., 89 (2014), 65-67.
|
[17] |
S. V. Gonchenko, M. S. Gonchenko and I. O. Sinitsky,
On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles, Izv. Ross. Akad. Nauk Ser. Mat., 84 (2020), 27-59.
doi: 10.4213/im8786. |
[18] |
A. O. Kazakov,
On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems, Radiophysics and Quantum Electronics, 61 (2019), 650-658.
doi: 10.1007/s11141-019-09925-6. |
[19] |
A. O. Kazakov, Merger of a Hénon-like attractor with a Hńon-like repeller in a model of vortex dynamics, Chaos, 30 (2020), 011105.
doi: 10.1063/1.5144144. |
[20] |
J. S. W. Lamb and J. A. G. Roberts,
Time-reversal symmetry in dynamical systems: A survey, Phys. D, 112 (1998), 1-39.
doi: 10.1016/S0167-2789(97)00199-1. |
[21] |
J. S. W. Lamb and O. V. Stenkin,
Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits, Nonlinearity, 17 (2004), 1217-1244.
doi: 10.1088/0951-7715/17/4/005. |
[22] |
L. M. Lerman and D. V. Turaev,
Breakdown of symmetry in reversible systems, Reg. Chaotic Dyn., 17 (2012), 318-336.
doi: 10.1134/S1560354712030082. |
[23] |
S. E. Newhouse,
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101-151.
|
[24] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[25] |
J. Palis and M. Viana,
High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 2, 140 (1994), 207-250.
doi: 10.2307/2118546. |
[26] |
A. Politi, G. L. Oppo and R. Badii,
Coexistence of conservative and dissipative behaviour in reversible dynamicla systems, Phys. Rev. A, 33 (1986), 4055-4060.
|
[27] |
T. Post, H. W. Capel, G. R. W. Quispel and J. R. van der Weele,
Bifurcations in two-dimensional reversible maps, Phys. A, 164 (1990), 625-662.
doi: 10.1016/0378-4371(90)90226-I. |
[28] |
J. A. G. Roberts and G. R. W. Quispel,
Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.
doi: 10.1016/0370-1573(92)90163-T. |
[29] |
N. Romero,
Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynam. Systems., 15 (1995), 735-757.
doi: 10.1017/S0143385700008634. |
[30] |
D. Ruelle,
Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.
doi: 10.1007/BF01206949. |
[31] |
D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley Publishing Co., Reading, MA, 1978. |
[32] |
M. B. Sevryuk, Reversible Systems, Lect. Notes Math., Vol. 1211, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0075877. |
[33] |
C. Simó and A. Vieiro,
Resonant zones, inner and outer splitting in generic and low order resonances of area preserving maps, Nonlinearity, 22 (2009), 1191-1245.
doi: 10.1088/0951-7715/22/5/012. |
[34] |
D. Turaev,
Richness of chaos in the absolute Newhouse domain, in Proc. Int. Congr. Math., Hyderabad (India), 3 (2010), 1804-1815.
|
[35] |
D. Turaev,
Maps close to identity and universal maps in the Newhouse domain, Commun. Math. Phys., 335 (2015), 1235-1277.
doi: 10.1007/s00220-015-2338-4. |




[1] |
Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555 |
[2] |
Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007 |
[3] |
Vanderlei Horita, Nivaldo Muniz. Basin problem for Hénon-like attractors in arbitrary dimensions. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 481-504. doi: 10.3934/dcds.2006.15.481 |
[4] |
Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031 |
[5] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[6] |
Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112 |
[7] |
Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651 |
[8] |
Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212 |
[9] |
Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106 |
[10] |
Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231 |
[11] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[12] |
Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161 |
[13] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[14] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[15] |
Shengfu Deng. Generalized pitchfork bifurcation on a two-dimensional gaseous star with self-gravity and surface tension. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3419-3435. doi: 10.3934/dcds.2014.34.3419 |
[16] |
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 |
[17] |
Fernando Lenarduzzi. Recoding the classical Hénon-Devaney map. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4073-4092. doi: 10.3934/dcds.2020172 |
[18] |
André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359 |
[19] |
Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299 |
[20] |
Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]