doi: 10.3934/dcds.2020344

Strichartz estimates and local regularity for the elastic wave equation with singular potentials

1. 

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

2. 

School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

* Corresponding author: Ihyeok Seo

Received  July 2020 Revised  August 2020 Published  October 2020

Fund Project: The second author is supported by a KIAS Individual Grant (MG073701) at Korea Institute for Advanced Study and NRF-2020R1F1A1A01073520. The thrid author is supported by NRF-2019R1F1A1061316

We obtain weighted $ L^2 $ estimates for the elastic wave equation perturbed by singular potentials including the inverse-square potential. We then deduce the Strichartz estimates under the sole ellipticity condition for the Lamé operator $ -\Delta^\ast $. This improves upon the previous result in [1] which relies on a stronger condition to guarantee the self-adjointness of $ -\Delta^\ast $. Furthermore, by establishing local energy estimates for the elastic wave equation we also prove that the solution has local regularity.

Citation: Seongyeon Kim, Yehyun Kwon, Ihyeok Seo. Strichartz estimates and local regularity for the elastic wave equation with singular potentials. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020344
References:
[1]

J. A. BarcelóL. FanelliA. RuizM. C. Vilela and N. Visciglia, Resolvent and Strichartz estimates for elastic wave equations, Appl. Math. Lett., 49 (2015), 33-41.  doi: 10.1016/j.aml.2015.04.013.  Google Scholar

[2]

J. A. BarcelóM. Folch-GabayetS. Pérez-EstevaA. Ruiz and M. C. Vilela, Limiting absorption principles for the Navier equation in elasticity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 817-842.   Google Scholar

[3]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential, Comm. Partial Differential Equations, 18 (1993), 1365-1397.  doi: 10.1080/03605309308820977.  Google Scholar

[4]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.  Google Scholar

[5]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1682.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[6]

F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman: "The uncertainty principle", Proc. Amer. Math. Soc., 108 (1990), 407-409.  doi: 10.2307/2048289.  Google Scholar

[7]

M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[8]

R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249-254.  doi: 10.2307/2043245.  Google Scholar

[9]

L. Cossetti, Bounds on eigenvalues of perturbed Lamé operators with complex potentials, Preprint, preprint, arXiv: 1904.08445. Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (1999), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[11]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.  Google Scholar

[12]

V. Georgiev and N. Visciglia, Decay estimates for the wave equation with potential, Comm. Partial Differential Equations, 28 (2003), 1325-1369.  doi: 10.1081/PDE-120024371.  Google Scholar

[13]

M. Goldberg, L. Vega and N. Visciglia, Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not., (2006), Art. ID 13927, 16 pp. doi: 10.1155/IMRN/2006/13927.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

S. KimI. Seo and J. Seok, Note on Strichartz inequalities for the wave equation with potential, Math. Inequal. Appl., 23 (2020), 377-382.  doi: 10.7153/mia-2020-23-29.  Google Scholar

[16]

S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., 46 (1993), 1221-1268.  doi: 10.1002/cpa.3160460902.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon, 1970. Google Scholar

[18]

H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[19]

D. Maharani, J. Widjaja and M. Wono Setya Budhi, Boundedness of Mikhlin Operator in Morrey Space, J. Phys.: Conf. Ser., 1180 (2019), 012002. doi: 10.1088/1742-6596/1180/1/012002.  Google Scholar

[20]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, 1983, reprinted by Dover Publications, N.Y., 1994. Google Scholar

[21]

S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., 136 (2008), 1237-1249.  doi: 10.1090/S0002-9939-07-08934-4.  Google Scholar

[22]

F. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, $L^p$ estimates for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 9 (2003), 427-442.  doi: 10.3934/dcds.2003.9.427.  Google Scholar

[23]

A. Ruiz and L. Vega, Local regularity of solutions to wave equations with time-dependent potentials, Duke Math. J., 76 (1994), 913-940.  doi: 10.1215/S0012-7094-94-07636-9.  Google Scholar

[24]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[25] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[27]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

show all references

References:
[1]

J. A. BarcelóL. FanelliA. RuizM. C. Vilela and N. Visciglia, Resolvent and Strichartz estimates for elastic wave equations, Appl. Math. Lett., 49 (2015), 33-41.  doi: 10.1016/j.aml.2015.04.013.  Google Scholar

[2]

J. A. BarcelóM. Folch-GabayetS. Pérez-EstevaA. Ruiz and M. C. Vilela, Limiting absorption principles for the Navier equation in elasticity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 817-842.   Google Scholar

[3]

M. Beals and W. Strauss, $L^p$ estimates for the wave equation with a potential, Comm. Partial Differential Equations, 18 (1993), 1365-1397.  doi: 10.1080/03605309308820977.  Google Scholar

[4]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.  doi: 10.1016/S0022-1236(03)00238-6.  Google Scholar

[5]

N. BurqF. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 53 (2004), 1665-1682.  doi: 10.1512/iumj.2004.53.2541.  Google Scholar

[6]

F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman: "The uncertainty principle", Proc. Amer. Math. Soc., 108 (1990), 407-409.  doi: 10.2307/2048289.  Google Scholar

[7]

M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.  doi: 10.1006/jfan.2000.3687.  Google Scholar

[8]

R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249-254.  doi: 10.2307/2043245.  Google Scholar

[9]

L. Cossetti, Bounds on eigenvalues of perturbed Lamé operators with complex potentials, Preprint, preprint, arXiv: 1904.08445. Google Scholar

[10]

S. Cuccagna, On the wave equation with a potential, Comm. Partial Differential Equations, 25 (1999), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[11]

P. D'Ancona, On large potential perturbations of the Schrödinger, wave and Klein-Gordon equations, Commun. Pure Appl. Anal., 19 (2020), 609-640.  doi: 10.3934/cpaa.2020029.  Google Scholar

[12]

V. Georgiev and N. Visciglia, Decay estimates for the wave equation with potential, Comm. Partial Differential Equations, 28 (2003), 1325-1369.  doi: 10.1081/PDE-120024371.  Google Scholar

[13]

M. Goldberg, L. Vega and N. Visciglia, Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials, Int. Math. Res. Not., (2006), Art. ID 13927, 16 pp. doi: 10.1155/IMRN/2006/13927.  Google Scholar

[14]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[15]

S. KimI. Seo and J. Seok, Note on Strichartz inequalities for the wave equation with potential, Math. Inequal. Appl., 23 (2020), 377-382.  doi: 10.7153/mia-2020-23-29.  Google Scholar

[16]

S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math., 46 (1993), 1221-1268.  doi: 10.1002/cpa.3160460902.  Google Scholar

[17]

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon, 1970. Google Scholar

[18]

H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130 (1995), 357-426.  doi: 10.1006/jfan.1995.1075.  Google Scholar

[19]

D. Maharani, J. Widjaja and M. Wono Setya Budhi, Boundedness of Mikhlin Operator in Morrey Space, J. Phys.: Conf. Ser., 1180 (2019), 012002. doi: 10.1088/1742-6596/1180/1/012002.  Google Scholar

[20]

J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, 1983, reprinted by Dover Publications, N.Y., 1994. Google Scholar

[21]

S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., 136 (2008), 1237-1249.  doi: 10.1090/S0002-9939-07-08934-4.  Google Scholar

[22]

F. PlanchonJ. G. Stalker and A. S. Tahvildar-Zadeh, $L^p$ estimates for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 9 (2003), 427-442.  doi: 10.3934/dcds.2003.9.427.  Google Scholar

[23]

A. Ruiz and L. Vega, Local regularity of solutions to wave equations with time-dependent potentials, Duke Math. J., 76 (1994), 913-940.  doi: 10.1215/S0012-7094-94-07636-9.  Google Scholar

[24]

H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[25] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.   Google Scholar
[26]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[27]

K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[9]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[10]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[11]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[14]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[15]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[16]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[17]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.338

Article outline

[Back to Top]