doi: 10.3934/dcds.2020346

Diffeomorphisms with a generalized Lipschitz shadowing property

1. 

Department of Mathematics, Mokwon University, Daejeon 35349, Korea

2. 

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea

3. 

School of Mathematical Sciences, Beihang University, Beijing 100191, China

* Corresponding author: Xiao Wen

Received  January 2020 Revised  August 2020 Published  October 2020

Fund Project: M. Lee was supported by NRF-2017R1A2B4001892 and NRF-2020R1F1A1A01051370. J. Oh was supported by NRF-2019R1A2C1002150. X. Wen was supported by National Natural Science Foundation of China (No. 11671025 and No. 11571188) and Fundamental Research Funds for the Central Universities

Shadowing property and structural stability are important dynamics with close relationship. Pilyugin and Tikhomirov proved that Lipschitz shadowing property implies the structural stability[5]. Todorov gave a similar result that Lipschitz two-sided limit shadowing property also implies structural stability for diffeomorpshisms[10]. In this paper, we define a generalized Lipschitz shadowing property which unifies these two kinds of Lipschitz shadowing properties, and prove that if a diffeomorphism $ f $ of a compact smooth manifold $ M $ has this generalized Lipschitz shadowing property then it is structurally stable. The only if part is also considered.

Citation: Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020346
References:
[1]

S-T. Liao, Obstruction sets I, Acta Math. Sinica., 23 (1980), 411-453.   Google Scholar

[2]

R. Mañé, Characterizations of AS diffeomorphisms, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math., Springer, Berlin, 597 (1977), 389–394.  Google Scholar

[3]

R. Mañé, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161-210.   Google Scholar

[4]

S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., 1706. Springer-Verlag, Berlin, 1999.  Google Scholar

[5]

S. Y. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515.  doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[6]

S. Y. Pilyugin and K. Sakai, Shadowing and Hyperbolicity, Lecture Notes in Math., 2193. Springer, Cham, 2017. doi: 10.1007/978-3-319-65184-2.  Google Scholar

[7]

V. A. Pliss, Bounded solutions of nonhomogeneous linear systems of differential equations, Problems in the Asymptotic Theory of Nonlinear Oscillations [in Russian], Naukova Dumka, Kiev, 278 (1977), 168–173.  Google Scholar

[8]

C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425-437.  doi: 10.1216/RMJ-1977-7-3-425.  Google Scholar

[9]

K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373-386.   Google Scholar

[10]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in shadowing theory, Discrete Contin. Dyn. Syst., 33 (2013), 4187-4205.  doi: 10.3934/dcds.2013.33.4187.  Google Scholar

[11]

L. Wen, Differentiable Dynamical Systems: An Introduction to Structural Stability and Hyperbolicity, Graduate Studies in Mathematics 173, American Mathematical Society, Providence, RI, 2016. doi: 10.1090/gsm/173.  Google Scholar

[12]

X. WenS. Gan and L. Wen, $C^1$-stably shadowable chain components are hyperbolic, J. Differential Equations., 246 (2009), 340-357.  doi: 10.1016/j.jde.2008.03.032.  Google Scholar

show all references

References:
[1]

S-T. Liao, Obstruction sets I, Acta Math. Sinica., 23 (1980), 411-453.   Google Scholar

[2]

R. Mañé, Characterizations of AS diffeomorphisms, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Math., Springer, Berlin, 597 (1977), 389–394.  Google Scholar

[3]

R. Mañé, A proof of the $C^1$ stability conjecture, Inst. Hautes Études Sci. Publ. Math., 66 (1988), 161-210.   Google Scholar

[4]

S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math., 1706. Springer-Verlag, Berlin, 1999.  Google Scholar

[5]

S. Y. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515.  doi: 10.1088/0951-7715/23/10/009.  Google Scholar

[6]

S. Y. Pilyugin and K. Sakai, Shadowing and Hyperbolicity, Lecture Notes in Math., 2193. Springer, Cham, 2017. doi: 10.1007/978-3-319-65184-2.  Google Scholar

[7]

V. A. Pliss, Bounded solutions of nonhomogeneous linear systems of differential equations, Problems in the Asymptotic Theory of Nonlinear Oscillations [in Russian], Naukova Dumka, Kiev, 278 (1977), 168–173.  Google Scholar

[8]

C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425-437.  doi: 10.1216/RMJ-1977-7-3-425.  Google Scholar

[9]

K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math., 31 (1994), 373-386.   Google Scholar

[10]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in shadowing theory, Discrete Contin. Dyn. Syst., 33 (2013), 4187-4205.  doi: 10.3934/dcds.2013.33.4187.  Google Scholar

[11]

L. Wen, Differentiable Dynamical Systems: An Introduction to Structural Stability and Hyperbolicity, Graduate Studies in Mathematics 173, American Mathematical Society, Providence, RI, 2016. doi: 10.1090/gsm/173.  Google Scholar

[12]

X. WenS. Gan and L. Wen, $C^1$-stably shadowable chain components are hyperbolic, J. Differential Equations., 246 (2009), 340-357.  doi: 10.1016/j.jde.2008.03.032.  Google Scholar

[1]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[2]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[3]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[4]

Shair Ahmad, Alan C. Lazer. On a property of a generalized Kolmogorov population model. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 1-6. doi: 10.3934/dcds.2013.33.1

[5]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[6]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[7]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[8]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[9]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[10]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020317

[11]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[12]

Pablo Sánchez, Jaume Sempere. Conflict, private and communal property. Journal of Dynamics & Games, 2016, 3 (4) : 355-369. doi: 10.3934/jdg.2016019

[13]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[14]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[15]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[16]

Bo Su. Doubling property of elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143

[17]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[18]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[19]

Jinjun Li, Min Wu. Generic property of irregular sets in systems satisfying the specification property. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 635-645. doi: 10.3934/dcds.2014.34.635

[20]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (16)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]