doi: 10.3934/dcds.2020347

Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature

1. 

LAMFA-CNRS UMR 7352, Université de Picardie Jules Verne, Faculté des Sciences, 33, rue Saint-Leu, 80039 Amiens CEDEX 1, France

2. 

Universidad Autónoma de Madrid, Facultad de Ciencias, Ciudad Universitaria de Cantoblanco, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain

* Corresponding author: Jesús Ocáriz

Received  January 2020 Revised  August 2020 Published  October 2020

In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every bounded solution to a semilinear Poisson equation. More precisely, we prove that the existence of a nonconstant bounded solution $ u $ for which one of the previous inequalities becomes an equality at some point leads to the splitting results as well as to a classification of such a solution $ u $.

Citation: Alberto Farina, Jesús Ocáriz. Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020347
References:
[1]

L. AmbrosioE. Brué and D. Semola, Rigidity of the 1-Bakery-Émery inequality and sets of finite perimeter in RCD spaces, Geom. Funct. Anal., 29 (2019), 949-1001.  doi: 10.1007/s00039-019-00504-5.  Google Scholar

[2]

M. T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom., 18 (1983), 701-721.  doi: 10.4310/jdg/1214438178.  Google Scholar

[3]

L. CaffarelliN. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.  doi: 10.1002/cpa.3160471103.  Google Scholar

[4]

J. Eschenburg and E. Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom., 2 (1984), 141-151.  doi: 10.1007/BF01876506.  Google Scholar

[5]

A. FarinaL. Mari and E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Comm. Partial Differential Equations, 38 (2013), 1818-1862.  doi: 10.1080/03605302.2013.795969.  Google Scholar

[6]

A. FarinaB. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.   Google Scholar

[7]

A. FarinaY. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings, Proc. Amer. Math. Soc., 140 (2012), 927-930.  doi: 10.1090/S0002-9939-2011-11241-3.  Google Scholar

[8]

A. Farina and E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., 225 (2010), 2808-2827.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[9]

A. Farina and E. Valdinoci, A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature, Discrete Contin. Dyn. Syst., 30 (2011), 1139-1144.  doi: 10.3934/dcds.2011.30.1139.  Google Scholar

[10]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.  doi: 10.1002/cpa.3160380515.  Google Scholar

[11]

P. Petersen, Riemannian Geometry, Springer, New York, 2006.  Google Scholar

[12]

S. Pigola, M. Rigoli and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[13]

A. Rato and M. Rigoli, Gradient bounds and Liouville's type theorems for the Poisson equation on complete Riemannian manifolds, Tohoku Math. J. (2), 47 (1995), 509-519.  doi: 10.2748/tmj/1178225458.  Google Scholar

[14]

T. Sakai, Riemannian Geometry, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/149.  Google Scholar

[15]

S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.  doi: 10.1002/cpa.3160280203.  Google Scholar

show all references

References:
[1]

L. AmbrosioE. Brué and D. Semola, Rigidity of the 1-Bakery-Émery inequality and sets of finite perimeter in RCD spaces, Geom. Funct. Anal., 29 (2019), 949-1001.  doi: 10.1007/s00039-019-00504-5.  Google Scholar

[2]

M. T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom., 18 (1983), 701-721.  doi: 10.4310/jdg/1214438178.  Google Scholar

[3]

L. CaffarelliN. Garofalo and F. Segàla, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math., 47 (1994), 1457-1473.  doi: 10.1002/cpa.3160471103.  Google Scholar

[4]

J. Eschenburg and E. Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom., 2 (1984), 141-151.  doi: 10.1007/BF01876506.  Google Scholar

[5]

A. FarinaL. Mari and E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemannian manifolds, Comm. Partial Differential Equations, 38 (2013), 1818-1862.  doi: 10.1080/03605302.2013.795969.  Google Scholar

[6]

A. FarinaB. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.   Google Scholar

[7]

A. FarinaY. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings, Proc. Amer. Math. Soc., 140 (2012), 927-930.  doi: 10.1090/S0002-9939-2011-11241-3.  Google Scholar

[8]

A. Farina and E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature, Adv. Math., 225 (2010), 2808-2827.  doi: 10.1016/j.aim.2010.05.008.  Google Scholar

[9]

A. Farina and E. Valdinoci, A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature, Discrete Contin. Dyn. Syst., 30 (2011), 1139-1144.  doi: 10.3934/dcds.2011.30.1139.  Google Scholar

[10]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684.  doi: 10.1002/cpa.3160380515.  Google Scholar

[11]

P. Petersen, Riemannian Geometry, Springer, New York, 2006.  Google Scholar

[12]

S. Pigola, M. Rigoli and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[13]

A. Rato and M. Rigoli, Gradient bounds and Liouville's type theorems for the Poisson equation on complete Riemannian manifolds, Tohoku Math. J. (2), 47 (1995), 509-519.  doi: 10.2748/tmj/1178225458.  Google Scholar

[14]

T. Sakai, Riemannian Geometry, American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/149.  Google Scholar

[15]

S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228.  doi: 10.1002/cpa.3160280203.  Google Scholar

[1]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[2]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[3]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[4]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[5]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[6]

Razvan C. Fetecau, Beril Zhang. Self-organization on Riemannian manifolds. Journal of Geometric Mechanics, 2019, 11 (3) : 397-426. doi: 10.3934/jgm.2019020

[7]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020042

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020305

[9]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[10]

Raz Kupferman, Asaf Shachar. A geometric perspective on the Piola identity in Riemannian settings. Journal of Geometric Mechanics, 2019, 11 (1) : 59-76. doi: 10.3934/jgm.2019004

[11]

J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783

[12]

Dante Carrasco-Olivera, Bernardo San Martín. Robust attractors without dominated splitting on manifolds with boundary. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4555-4563. doi: 10.3934/dcds.2014.34.4555

[13]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[14]

Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas. Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Problems & Imaging, 2007, 1 (1) : 135-157. doi: 10.3934/ipi.2007.1.135

[15]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[16]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[17]

Lei Qiao. Matsaev's type theorems for solutions of the stationary Schrödinger equation and its applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5709-5720. doi: 10.3934/dcds.2016050

[18]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[19]

Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701

[20]

Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53.

2019 Impact Factor: 1.338

Article outline

[Back to Top]