• Previous Article
    Asymptotic stability of viscous contact wave for the inflow problem of the one-dimensional radiative Euler equations
  • DCDS Home
  • This Issue
  • Next Article
    Splitting theorems on complete Riemannian manifolds with nonnegative Ricci curvature
April  2021, 41(4): 1939-1969. doi: 10.3934/dcds.2020348

Steady asymmetric vortex pairs for Euler equations

1. 

NYU, Abu Dhabi, Saadiyat Marina District, P.O. Box 129188, Abu Dhabi, UAE

2. 

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35 042 Rennes cedex, France

Received  January 2020 Revised  August 2020 Published  April 2021 Early access  October 2020

In this paper, we study the existence of co-rotating and counter-rotating unequal-sized pairs of simply connected patches for Euler equations. In particular, we prove the existence of curves of steadily co-rotating and counter-rotating asymmetric vortex pairs passing through a point vortex pairs with unequal circulations. We also provide a careful study of the asymptotic behavior for the angular velocity and the translating speed close to the point vortex pairs.

Citation: Zineb Hassainia, Taoufik Hmidi. Steady asymmetric vortex pairs for Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1939-1969. doi: 10.3934/dcds.2020348
References:
[1]

T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problem in domains, Nonlinearity, 31 (2018), 2156-2172.  doi: 10.1088/1361-6544/aaaf2d.

[2]

J. Burbea, Motions of vortex patches, Lett. Math. Phys., 6 (1982), 1-16.  doi: 10.1007/BF02281165.

[3]

A. CastroD. Córdoba and J. Gómez-Serrano, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, Duke Math. J., 165 (2016), 935-984.  doi: 10.1215/00127094-3449673.

[4]

A. Castro, D. Córdoba and J. Gómez-Serrano, Uniformly rotating analytic global patch solutions for active scalars, Ann. PDE, 2 (2016), Art. 1, 34 pp. doi: 10.1007/s40818-016-0007-3.

[5]

A. CastroD. Córdoba and J. Gómez-Serrano, Uniformly rotating smooth solutions for the incompressible 2D Euler equations, Arch. Ration. Mech. Anal., 231 (2019), 719-785.  doi: 10.1007/s00205-018-1288-3.

[6]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary V-states interactions, recurrence, and breaking, Phys. Rev. Lett., 40 (1978), 859-862. 

[7]

F. de la HozZ. Hassainia and T. Hmidi, Doubly connected V-states for the generalized surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 220 (2016), 1209-1281.  doi: 10.1007/s00205-015-0953-z.

[8]

F. de la HozZ. HassainiaT. Hmidi and J Mateu, An analytical and numerical study of steady patches in the disc, Anal. PDE, 9 (2016), 1609-1670.  doi: 10.2140/apde.2016.9.1609.

[9]

D. G. Dritschel, A general theory for two-dimensional vortex interactions, J. Fluid Mech., 293 (1995), 269-303.  doi: 10.1017/S0022112095001716.

[10]

D. G. DritschelT. Hmidi and C. Renault, Imperfect bifurcation for the quasi-geostrophic shallow-water equations, Arch. Ration. Mech. Anal., 231 (2019), 1853-1915.  doi: 10.1007/s00205-018-1312-7.

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.

[12]

C. Garcìa, T. Hmidi and J. Mateu, Time periodic solutions for 3D quasi-geostrophic model, preprint, arXiv: 2004.01644.

[13]

C. GarcìaT. Hmidi and J. Soler, Non uniform rotating vortices and periodic orbits for the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 238 (2020), 929-1085.  doi: 10.1007/s00205-020-01561-z.

[14]

J. Gómez-Serrano, On the existence of stationary patches, Adv. Math., 343 (2019), 110-140.  doi: 10.1016/j.aim.2018.11.012.

[15]

J. Gómez-Serrano, J. Park, J. Shi and Y. Yao, Symmetry in stationary and uniformly-rotating solutions of active scalar equations, preprint, arXiv: 1908.01722.

[16]

Z. Hassainia and T. Hmidi, On the V-States for the generalized quasi-geostrophic equations, Comm. Math. Phys., 337 (2015), 321-377.  doi: 10.1007/s00220-015-2300-5.

[17]

Z. HassainiaN. Masmoudi and M. H. Wheeler, Global bifurcation of rotating vortex patches, Comm. Pure Appl. Math., 73 (2020), 1933-1980.  doi: 10.1002/cpa.21855.

[18]

T. Hmidi, On the trivial solutions for the rotating patch model, J. Evol. Equ., 15 (2015), 801-816.  doi: 10.1007/s00028-015-0281-7.

[19]

T. Hmidi and C. Renault, Existence of small loops in a bifurcation diagram near degenerate eigenvalues, Nonlinearity, 30 (2017), 3821-3852.  doi: 10.1088/1361-6544/aa82ef.

[20]

F. de la HozT. HmidiJ. Mateu and J. Verdera, Doubly connected $V$-states for the planar Euler equations, SIAM J. Math. Anal., 48 (2016), 1892-1928.  doi: 10.1137/140992801.

[21]

T. Hmidi and J. Mateu, Bifurcation of rotating patches from Kirchhoff vortices, Discrete Contin. Dyn. Syst., 36 (2016), 5401-5422.  doi: 10.3934/dcds.2016038.

[22]

T. Hmidi and J. Mateu, Degenerate bifurcation of the rotating patches, Adv. Math., 302 (2016), 799-850.  doi: 10.1016/j.aim.2016.07.022.

[23]

T. Hmidi and J. Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations, Comm. Math. Phys., 350 (2017), 699-747.  doi: 10.1007/s00220-016-2784-7.

[24]

T. HmidiJ. Mateu and J. Verdera, Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal., 209 (2013), 171-208.  doi: 10.1007/s00205-013-0618-8.

[25]

T. HmidiJ. Mateu and J. Verdera, On rotating doubly connected vortices, J. Differential Equations, 258 (2015), 1395-1429.  doi: 10.1016/j.jde.2014.10.021.

[26]

G. Keady, Asymptotic estimates for symmetric vortex streets, J. Austral. Math. Soc. Ser. B, 26 (1985), 487-502.  doi: 10.1017/S0334270000004677.

[27]

G. Kirchhoff, Vorlesungen uber Mathematische Physik, Leipzig, 1874.

[28]

P. K. Newton, The $N$-Vortex Problem, Analytical techniques. Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[29]

J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure Appl. Math., 28, (1975), 679–700. doi: 10.1002/cpa.3160280602.

[30]

E. A. Overman II, Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting $V$-states, SIAM J. Appl. Math., 46 (1986), 765-800.  doi: 10.1137/0146049.

[31]

R. T. Pierrehumbert, A family of steady, translating vortex pairs with distributed vorticity, Journal of Fluid Mechanics, 99 (1980), 129-144.  doi: 10.1017/S0022112080000559.

[32]

C. Renault, Relative equilibria with holes for the surface quasi-geostrophic equations, J. Differential Equations, 263 (2017), 567-614.  doi: 10.1016/j.jde.2017.02.050.

[33] P. G. Saffman, Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992. 
[34]

P. G. Saffman and R. Szeto, Equilibrium shapes of a pair of equal uniform vortices, Phys. Fluids, 23 (1980), 2339-2342.  doi: 10.1063/1.862935.

[35]

B. Turkington, Corotating steady vortex flows with $N$-fold symmety, Nonlinear Anal., 9 (1985), 351-369.  doi: 10.1016/0362-546X(85)90059-8.

[36]

H. M. WuE. A. Overman II and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: rotating and translating $V$-states with limiting cases I. Numerical algorithms ans results, J. Comput. Phys., 53 (1984), 42-71.  doi: 10.1016/0021-9991(84)90051-2.

[37]

V. I. Yudovič, Non-stationnary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz., 3 (1963), 1032–1066.

show all references

References:
[1]

T. Bartsch and M. Sacchet, Periodic solutions with prescribed minimal period of vortex type problem in domains, Nonlinearity, 31 (2018), 2156-2172.  doi: 10.1088/1361-6544/aaaf2d.

[2]

J. Burbea, Motions of vortex patches, Lett. Math. Phys., 6 (1982), 1-16.  doi: 10.1007/BF02281165.

[3]

A. CastroD. Córdoba and J. Gómez-Serrano, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, Duke Math. J., 165 (2016), 935-984.  doi: 10.1215/00127094-3449673.

[4]

A. Castro, D. Córdoba and J. Gómez-Serrano, Uniformly rotating analytic global patch solutions for active scalars, Ann. PDE, 2 (2016), Art. 1, 34 pp. doi: 10.1007/s40818-016-0007-3.

[5]

A. CastroD. Córdoba and J. Gómez-Serrano, Uniformly rotating smooth solutions for the incompressible 2D Euler equations, Arch. Ration. Mech. Anal., 231 (2019), 719-785.  doi: 10.1007/s00205-018-1288-3.

[6]

G. S. Deem and N. J. Zabusky, Vortex waves: Stationary V-states interactions, recurrence, and breaking, Phys. Rev. Lett., 40 (1978), 859-862. 

[7]

F. de la HozZ. Hassainia and T. Hmidi, Doubly connected V-states for the generalized surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 220 (2016), 1209-1281.  doi: 10.1007/s00205-015-0953-z.

[8]

F. de la HozZ. HassainiaT. Hmidi and J Mateu, An analytical and numerical study of steady patches in the disc, Anal. PDE, 9 (2016), 1609-1670.  doi: 10.2140/apde.2016.9.1609.

[9]

D. G. Dritschel, A general theory for two-dimensional vortex interactions, J. Fluid Mech., 293 (1995), 269-303.  doi: 10.1017/S0022112095001716.

[10]

D. G. DritschelT. Hmidi and C. Renault, Imperfect bifurcation for the quasi-geostrophic shallow-water equations, Arch. Ration. Mech. Anal., 231 (2019), 1853-1915.  doi: 10.1007/s00205-018-1312-7.

[11]

L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511569203.

[12]

C. Garcìa, T. Hmidi and J. Mateu, Time periodic solutions for 3D quasi-geostrophic model, preprint, arXiv: 2004.01644.

[13]

C. GarcìaT. Hmidi and J. Soler, Non uniform rotating vortices and periodic orbits for the two-dimensional Euler equations, Arch. Ration. Mech. Anal., 238 (2020), 929-1085.  doi: 10.1007/s00205-020-01561-z.

[14]

J. Gómez-Serrano, On the existence of stationary patches, Adv. Math., 343 (2019), 110-140.  doi: 10.1016/j.aim.2018.11.012.

[15]

J. Gómez-Serrano, J. Park, J. Shi and Y. Yao, Symmetry in stationary and uniformly-rotating solutions of active scalar equations, preprint, arXiv: 1908.01722.

[16]

Z. Hassainia and T. Hmidi, On the V-States for the generalized quasi-geostrophic equations, Comm. Math. Phys., 337 (2015), 321-377.  doi: 10.1007/s00220-015-2300-5.

[17]

Z. HassainiaN. Masmoudi and M. H. Wheeler, Global bifurcation of rotating vortex patches, Comm. Pure Appl. Math., 73 (2020), 1933-1980.  doi: 10.1002/cpa.21855.

[18]

T. Hmidi, On the trivial solutions for the rotating patch model, J. Evol. Equ., 15 (2015), 801-816.  doi: 10.1007/s00028-015-0281-7.

[19]

T. Hmidi and C. Renault, Existence of small loops in a bifurcation diagram near degenerate eigenvalues, Nonlinearity, 30 (2017), 3821-3852.  doi: 10.1088/1361-6544/aa82ef.

[20]

F. de la HozT. HmidiJ. Mateu and J. Verdera, Doubly connected $V$-states for the planar Euler equations, SIAM J. Math. Anal., 48 (2016), 1892-1928.  doi: 10.1137/140992801.

[21]

T. Hmidi and J. Mateu, Bifurcation of rotating patches from Kirchhoff vortices, Discrete Contin. Dyn. Syst., 36 (2016), 5401-5422.  doi: 10.3934/dcds.2016038.

[22]

T. Hmidi and J. Mateu, Degenerate bifurcation of the rotating patches, Adv. Math., 302 (2016), 799-850.  doi: 10.1016/j.aim.2016.07.022.

[23]

T. Hmidi and J. Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations, Comm. Math. Phys., 350 (2017), 699-747.  doi: 10.1007/s00220-016-2784-7.

[24]

T. HmidiJ. Mateu and J. Verdera, Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal., 209 (2013), 171-208.  doi: 10.1007/s00205-013-0618-8.

[25]

T. HmidiJ. Mateu and J. Verdera, On rotating doubly connected vortices, J. Differential Equations, 258 (2015), 1395-1429.  doi: 10.1016/j.jde.2014.10.021.

[26]

G. Keady, Asymptotic estimates for symmetric vortex streets, J. Austral. Math. Soc. Ser. B, 26 (1985), 487-502.  doi: 10.1017/S0334270000004677.

[27]

G. Kirchhoff, Vorlesungen uber Mathematische Physik, Leipzig, 1874.

[28]

P. K. Newton, The $N$-Vortex Problem, Analytical techniques. Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[29]

J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure Appl. Math., 28, (1975), 679–700. doi: 10.1002/cpa.3160280602.

[30]

E. A. Overman II, Steady-state solutions of the Euler equations in two dimensions. II. Local analysis of limiting $V$-states, SIAM J. Appl. Math., 46 (1986), 765-800.  doi: 10.1137/0146049.

[31]

R. T. Pierrehumbert, A family of steady, translating vortex pairs with distributed vorticity, Journal of Fluid Mechanics, 99 (1980), 129-144.  doi: 10.1017/S0022112080000559.

[32]

C. Renault, Relative equilibria with holes for the surface quasi-geostrophic equations, J. Differential Equations, 263 (2017), 567-614.  doi: 10.1016/j.jde.2017.02.050.

[33] P. G. Saffman, Vortex dynamics. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992. 
[34]

P. G. Saffman and R. Szeto, Equilibrium shapes of a pair of equal uniform vortices, Phys. Fluids, 23 (1980), 2339-2342.  doi: 10.1063/1.862935.

[35]

B. Turkington, Corotating steady vortex flows with $N$-fold symmety, Nonlinear Anal., 9 (1985), 351-369.  doi: 10.1016/0362-546X(85)90059-8.

[36]

H. M. WuE. A. Overman II and N. J. Zabusky, Steady-state solutions of the Euler equations in two dimensions: rotating and translating $V$-states with limiting cases I. Numerical algorithms ans results, J. Comput. Phys., 53 (1984), 42-71.  doi: 10.1016/0021-9991(84)90051-2.

[37]

V. I. Yudovič, Non-stationnary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz., 3 (1963), 1032–1066.

[1]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[2]

Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581

[3]

Ludovic Godard-Cadillac. Vortex collapses for the Euler and Quasi-Geostrophic models. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3143-3168. doi: 10.3934/dcds.2022012

[4]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[5]

Chjan C. Lim, Ka Kit Tung. Introduction: Recent advances in vortex dynamics and turbulence. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : i-i. doi: 10.3934/dcdsb.2005.5.1i

[6]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic and Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[7]

Pedro J. Torres, R. Carretero-González, S. Middelkamp, P. Schmelcher, Dimitri J. Frantzeskakis, P.G. Kevrekidis. Vortex interaction dynamics in trapped Bose-Einstein condensates. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1589-1615. doi: 10.3934/cpaa.2011.10.1589

[8]

Zhiguo Xu, Weizhu Bao, Shaoyun Shi. Quantized vortex dynamics and interaction patterns in superconductivity based on the reduced dynamical law. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2265-2297. doi: 10.3934/dcdsb.2018096

[9]

Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15

[10]

Jair Koiller. Getting into the vortex: On the contributions of james montaldi. Journal of Geometric Mechanics, 2020, 12 (3) : 507-523. doi: 10.3934/jgm.2020018

[11]

Fanghua Lin, Juncheng Wei. Superfluids passing an obstacle and vortex nucleation. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6801-6824. doi: 10.3934/dcds.2019232

[12]

P.K. Newton. N-vortex equilibrium theory. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[13]

James Montaldi, Amna Shaddad. Generalized point vortex dynamics on $ \mathbb{CP} ^2 $. Journal of Geometric Mechanics, 2019, 11 (4) : 601-619. doi: 10.3934/jgm.2019030

[14]

Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971

[15]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[16]

Tae-Yeon Kim, Xuemei Chen, John E. Dolbow, Eliot Fried. Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2207-2225. doi: 10.3934/dcdsb.2014.19.2207

[17]

Volker Elling. Compressible vortex sheets separating from solid boundaries. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6781-6797. doi: 10.3934/dcds.2016095

[18]

Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439

[19]

François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1259-1282. doi: 10.3934/dcds.2010.27.1259

[20]

Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (311)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]