-
Previous Article
Approximation properties of Lüroth expansions
- DCDS Home
- This Issue
-
Next Article
Local well-posedness for the Klein-Gordon-Zakharov system in 3D
A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity
1. | University of Notre Dame, Department of Mathematics, Notre Dame, IN 46556, USA |
2. | Universidade Federal de São Carlos, Departamento de Matemática, São Carlos, SP 13565-905, Brazil |
The Cauchy problem of the modified Camassa-Holm (mCH) equation with initial data $ u(0) $ that are analytic on the line and have uniform radius of analyticity $ r(0) $ is considered. First, by using bilinear estimates for the nonlocal nonlinearity in analytic Bourgain spaces, it is shown that this equation is well-posed in analytic Gevrey spaces $ G^{\delta, s} $, with useful solution lifespan $ T_0 $ and size estimates. This shows that the radius of spatial analyticity $ r(t) $ persists during the time interval $ [-T_0, T_0] $. Then, exploiting the fact that solutions to this equation conserve the $ H^1 $ norm, and utilizing the available bilinear estimates, an almost conservation low in $ G^{\delta,1} $ spaces is proved. Finally, using this almost conservation law it is shown that the solution $ u(t) $ exists for all time $ t $ and a lower bound for the radius of spatial analyticity is provided.
References:
[1] |
R. F. Barostichi, A. A. Himonas and G. Petronilho,
Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.
doi: 10.1016/j.jfa.2015.06.008. |
[2] |
J. L. Bona, Z. Grujić and H. Kalisch,
Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.
doi: 10.1016/j.anihpc.2004.12.004. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262. Google Scholar |
[5] |
J. Bourgain,
On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.
|
[6] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[7] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.
doi: 10.1016/S0022-1236(03)00218-0. |
[10] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[11] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[12] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[13] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[14] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[15] |
R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp.
doi: 10.1016/j.na.2020.112055. |
[16] |
C. Foias and R. Temam,
Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
doi: 10.1016/0022-1236(89)90015-3. |
[17] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Z. Grujić and H. Kalisch,
Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.
|
[19] |
A. A. Himonas, H. Kalisch and S. Selberg,
On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.
doi: 10.1016/j.nonrwa.2017.04.003. |
[20] |
A. A. Himonas and G. Misiołek,
Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.
doi: 10.1006/jdeq.1999.3695. |
[21] |
A. A. Himonas and C. Kenig,
Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.
|
[22] |
A. A. Himonas and G. Misiołek,
The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.
doi: 10.1080/03605309808821340. |
[23] |
A. A. Himonas and G. Misiołek,
Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.
doi: 10.1007/s00208-003-0466-1. |
[24] |
H. Hirayama,
Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.
doi: 10.1007/s00030-011-0147-9. |
[25] |
T. Kato,
On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.
|
[26] |
T. Kato and K. Masuda,
Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.
doi: 10.1016/S0294-1449(16)30377-8. |
[27] |
Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976. |
[28] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[30] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
C. E. Kenig, G. Ponce and L. Vega,
Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.
doi: 10.1090/S0002-9939-1994-1195480-8. |
[32] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[33] |
J. Lenells,
Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.
doi: 10.1016/j.jde.2004.09.007. |
[34] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[35] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009. |
[36] |
G. Rodríguez-Blanco,
On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[37] |
S. Selberg and D. O. da Silva,
Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.
doi: 10.1007/s00023-016-0498-1. |
[38] |
T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
show all references
References:
[1] |
R. F. Barostichi, A. A. Himonas and G. Petronilho,
Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.
doi: 10.1016/j.jfa.2015.06.008. |
[2] |
J. L. Bona, Z. Grujić and H. Kalisch,
Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.
doi: 10.1016/j.anihpc.2004.12.004. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262. Google Scholar |
[5] |
J. Bourgain,
On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.
|
[6] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[7] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.
doi: 10.1016/S0022-1236(03)00218-0. |
[10] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[11] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[12] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[13] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[14] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[15] |
R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp.
doi: 10.1016/j.na.2020.112055. |
[16] |
C. Foias and R. Temam,
Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
doi: 10.1016/0022-1236(89)90015-3. |
[17] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Z. Grujić and H. Kalisch,
Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.
|
[19] |
A. A. Himonas, H. Kalisch and S. Selberg,
On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.
doi: 10.1016/j.nonrwa.2017.04.003. |
[20] |
A. A. Himonas and G. Misiołek,
Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.
doi: 10.1006/jdeq.1999.3695. |
[21] |
A. A. Himonas and C. Kenig,
Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.
|
[22] |
A. A. Himonas and G. Misiołek,
The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.
doi: 10.1080/03605309808821340. |
[23] |
A. A. Himonas and G. Misiołek,
Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.
doi: 10.1007/s00208-003-0466-1. |
[24] |
H. Hirayama,
Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.
doi: 10.1007/s00030-011-0147-9. |
[25] |
T. Kato,
On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.
|
[26] |
T. Kato and K. Masuda,
Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.
doi: 10.1016/S0294-1449(16)30377-8. |
[27] |
Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976. |
[28] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[30] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
C. E. Kenig, G. Ponce and L. Vega,
Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.
doi: 10.1090/S0002-9939-1994-1195480-8. |
[32] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[33] |
J. Lenells,
Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.
doi: 10.1016/j.jde.2004.09.007. |
[34] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[35] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009. |
[36] |
G. Rodríguez-Blanco,
On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[37] |
S. Selberg and D. O. da Silva,
Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.
doi: 10.1007/s00023-016-0498-1. |
[38] |
T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
[1] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[2] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[3] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2020393 |
[4] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[5] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[6] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[7] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[8] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[9] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[10] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[11] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[12] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[13] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[14] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[15] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[16] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[17] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[18] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[19] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[20] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]