doi: 10.3934/dcds.2020351

A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity

1. 

University of Notre Dame, Department of Mathematics, Notre Dame, IN 46556, USA

2. 

Universidade Federal de São Carlos, Departamento de Matemática, São Carlos, SP 13565-905, Brazil

* Corresponding author

Received  May 2020 Published  October 2020

The Cauchy problem of the modified Camassa-Holm (mCH) equation with initial data $ u(0) $ that are analytic on the line and have uniform radius of analyticity $ r(0) $ is considered. First, by using bilinear estimates for the nonlocal nonlinearity in analytic Bourgain spaces, it is shown that this equation is well-posed in analytic Gevrey spaces $ G^{\delta, s} $, with useful solution lifespan $ T_0 $ and size estimates. This shows that the radius of spatial analyticity $ r(t) $ persists during the time interval $ [-T_0, T_0] $. Then, exploiting the fact that solutions to this equation conserve the $ H^1 $ norm, and utilizing the available bilinear estimates, an almost conservation low in $ G^{\delta,1} $ spaces is proved. Finally, using this almost conservation law it is shown that the solution $ u(t) $ exists for all time $ t $ and a lower bound for the radius of spatial analyticity is provided.

Citation: A. Alexandrou Himonas, Gerson Petronilho. A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020351
References:
[1]

R. F. BarostichiA. A. Himonas and G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.  doi: 10.1016/j.jfa.2015.06.008.  Google Scholar

[2]

J. L. BonaZ. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.  doi: 10.1016/j.anihpc.2004.12.004.  Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[4]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262.   Google Scholar

[5]

J. Bourgain, On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.   Google Scholar

[6]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[7]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[9]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.  doi: 10.1016/S0022-1236(03)00218-0.  Google Scholar

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.   Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[14]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[15]

R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp. doi: 10.1016/j.na.2020.112055.  Google Scholar

[16]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.  doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[17]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[18]

Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.   Google Scholar

[19]

A. A. HimonasH. Kalisch and S. Selberg, On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.  doi: 10.1016/j.nonrwa.2017.04.003.  Google Scholar

[20]

A. A. Himonas and G. Misiołek, Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.  doi: 10.1006/jdeq.1999.3695.  Google Scholar

[21]

A. A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.   Google Scholar

[22]

A. A. Himonas and G. Misiołek, The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.  doi: 10.1080/03605309808821340.  Google Scholar

[23]

A. A. Himonas and G. Misiołek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.  doi: 10.1007/s00208-003-0466-1.  Google Scholar

[24]

H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.  doi: 10.1007/s00030-011-0147-9.  Google Scholar

[25]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.   Google Scholar

[26]

T. Kato and K. Masuda, Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.  doi: 10.1016/S0294-1449(16)30377-8.  Google Scholar

[27]

Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976.  Google Scholar

[28]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[29]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[31]

C. E. KenigG. Ponce and L. Vega, Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.  doi: 10.1090/S0002-9939-1994-1195480-8.  Google Scholar

[32]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[33]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[34]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[35]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009.  Google Scholar

[36]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[37]

S. Selberg and D. O. da Silva, Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.  doi: 10.1007/s00023-016-0498-1.  Google Scholar

[38]

T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

show all references

References:
[1]

R. F. BarostichiA. A. Himonas and G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.  doi: 10.1016/j.jfa.2015.06.008.  Google Scholar

[2]

J. L. BonaZ. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.  doi: 10.1016/j.anihpc.2004.12.004.  Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar

[4]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262.   Google Scholar

[5]

J. Bourgain, On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.   Google Scholar

[6]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[7]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[8]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.  Google Scholar

[9]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.  doi: 10.1016/S0022-1236(03)00218-0.  Google Scholar

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.   Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[13]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[14]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[15]

R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp. doi: 10.1016/j.na.2020.112055.  Google Scholar

[16]

C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.  doi: 10.1016/0022-1236(89)90015-3.  Google Scholar

[17]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[18]

Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.   Google Scholar

[19]

A. A. HimonasH. Kalisch and S. Selberg, On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.  doi: 10.1016/j.nonrwa.2017.04.003.  Google Scholar

[20]

A. A. Himonas and G. Misiołek, Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.  doi: 10.1006/jdeq.1999.3695.  Google Scholar

[21]

A. A. Himonas and C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.   Google Scholar

[22]

A. A. Himonas and G. Misiołek, The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.  doi: 10.1080/03605309808821340.  Google Scholar

[23]

A. A. Himonas and G. Misiołek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.  doi: 10.1007/s00208-003-0466-1.  Google Scholar

[24]

H. Hirayama, Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.  doi: 10.1007/s00030-011-0147-9.  Google Scholar

[25]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.   Google Scholar

[26]

T. Kato and K. Masuda, Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.  doi: 10.1016/S0294-1449(16)30377-8.  Google Scholar

[27]

Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976.  Google Scholar

[28]

C. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar

[29]

C. E. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.  Google Scholar

[30]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[31]

C. E. KenigG. Ponce and L. Vega, Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.  doi: 10.1090/S0002-9939-1994-1195480-8.  Google Scholar

[32]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[33]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[34]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[35]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009.  Google Scholar

[36]

G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.  doi: 10.1016/S0362-546X(01)00791-X.  Google Scholar

[37]

S. Selberg and D. O. da Silva, Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.  doi: 10.1007/s00023-016-0498-1.  Google Scholar

[38]

T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. doi: 10.1090/cbms/106.  Google Scholar

[1]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

[2]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[3]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[4]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[5]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[6]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[7]

Xingxing Liu, Zhijun Qiao, Zhaoyang Yin. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1283-1304. doi: 10.3934/cpaa.2014.13.1283

[8]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[9]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[10]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[11]

Hideshi Yamane. Local and global analyticity for $\mu$-Camassa-Holm equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4307-4340. doi: 10.3934/dcds.2020182

[12]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[13]

Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242

[14]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[15]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[16]

Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243

[17]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[18]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[19]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[20]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

2019 Impact Factor: 1.338

Article outline

[Back to Top]