May  2021, 41(5): 2051-2070. doi: 10.3934/dcds.2020352

Cylinder absolute games on solenoids

1. 

Beijing International Center for Mathematical Research, Peking University, Beijing, 100 871, China

2. 

Current address: Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100 084, China

Received  August 2019 Published  May 2021 Early access  October 2020

Fund Project: Parts of this work first appeared in a slightly different avatar in the author's PhD thesis submitted to the Tata Institute of Fundamental Research, Bombay in 2017. For a portion of that duration, financial support from CSIR, Government of India under SPM-07/858(0199)/2014- EMR-I is duly acknowledged

Let $ A $ be any affine surjective endomorphism of a solenoid ${\Sigma_{{\mathcal{P}}}} $ over the circle $ S^1 $ which is not an infinite-order translation of $ {\Sigma_{{\mathcal{P}}}}$. We prove the existence of a cylinder absolute winning (CAW) subset $ F \subseteq {\Sigma_{{\mathcal{P}}}} $ with the property that for any $ x \in F $, the orbit closure $ \overline{\{ A^{\ell} x \mid \ell \in {\mathbb{N}} \}} $ does not contain any periodic orbits. A measure $ \mu $ on a metric space is said to be Federer if for all small enough balls around any generic point with respect to $ \mu $, the measure grows by at most some constant multiple on doubling the radius of the ball. The class of infinite solenoids considered in this paper provides, to the best of our knowledge, some of the early natural examples of non-Federer spaces where absolute games can be played and won. Dimension maximality and incompressibility of CAW sets is also discussed for a number of possibilities in addition to their winning nature for the games known from before.

Citation: L. Singhal. Cylinder absolute games on solenoids. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2051-2070. doi: 10.3934/dcds.2020352
References:
[1]

J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp. doi: 10.1016/j.aim.2019.106743.

[2]

C. S. Aravinda, Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.  doi: 10.1017/S0305004100072777.

[3]

D. BadziahinA. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.  doi: 10.4007/annals.2011.174.3.9.

[4]

D. Berend, Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.  doi: 10.1090/S0002-9947-1985-0779072-7.

[5]

R. BroderickL. Fishman and D. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.  doi: 10.1017/S0143385710000374.

[6]

R. BroderickL. FishmanD. KleinbockA. Reich and B. Weiss, The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.  doi: 10.1017/S0305004112000242.

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660. 

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.  doi: 10.1017/S0143385700004673.

[9]

S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86. doi: 10.1017/CBO9780511661983.006.

[10]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.

[11]

L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp. doi: 10.1090/memo/1215.

[12]

S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239.

[13]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172. doi: 10.1090/trans2/171/11.

[14]

D. Kleinbock and T. Ly, Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.  doi: 10.1016/j.jnt.2015.12.014.

[15]

D. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.  doi: 10.1016/j.aim.2009.09.018.

[16]

S. Kristensen, Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.  doi: 10.5802/jtnb.552.

[17]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.  doi: 10.1017/S0143385700004545.

[18]

C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.  doi: 10.1007/s00039-010-0078-3.

[19] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007. 
[20]

W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.  doi: 10.1090/S0002-9947-1966-0195595-4.

[21]

S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145.

[22]

S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152.

[23]

A. M. Wilson, On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.  doi: 10.1090/S0002-9939-1976-0390181-7.

show all references

References:
[1]

J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp. doi: 10.1016/j.aim.2019.106743.

[2]

C. S. Aravinda, Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.  doi: 10.1017/S0305004100072777.

[3]

D. BadziahinA. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.  doi: 10.4007/annals.2011.174.3.9.

[4]

D. Berend, Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.  doi: 10.1090/S0002-9947-1985-0779072-7.

[5]

R. BroderickL. Fishman and D. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.  doi: 10.1017/S0143385710000374.

[6]

R. BroderickL. FishmanD. KleinbockA. Reich and B. Weiss, The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.  doi: 10.1017/S0305004112000242.

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660. 

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.  doi: 10.1017/S0143385700004673.

[9]

S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86. doi: 10.1017/CBO9780511661983.006.

[10]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.

[11]

L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp. doi: 10.1090/memo/1215.

[12]

S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239.

[13]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172. doi: 10.1090/trans2/171/11.

[14]

D. Kleinbock and T. Ly, Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.  doi: 10.1016/j.jnt.2015.12.014.

[15]

D. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.  doi: 10.1016/j.aim.2009.09.018.

[16]

S. Kristensen, Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.  doi: 10.5802/jtnb.552.

[17]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.  doi: 10.1017/S0143385700004545.

[18]

C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.  doi: 10.1007/s00039-010-0078-3.

[19] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007. 
[20]

W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.  doi: 10.1090/S0002-9947-1966-0195595-4.

[21]

S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145.

[22]

S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152.

[23]

A. M. Wilson, On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.  doi: 10.1090/S0002-9939-1976-0390181-7.

[1]

Weisheng Wu. Modified Schmidt games and non-dense forward orbits of partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3463-3481. doi: 10.3934/dcds.2016.36.3463

[2]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[3]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[4]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[5]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[6]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[7]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[8]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[9]

Yuan-Ling Ye. Non-uniformly expanding dynamical systems: Multi-dimension. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2511-2553. doi: 10.3934/dcds.2019106

[10]

Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006

[11]

Tomasz Szarek, Mariusz Urbański, Anna Zdunik. Continuity of Hausdorff measure for conformal dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4647-4692. doi: 10.3934/dcds.2013.33.4647

[12]

Nhan-Phu Chung. Gromov-Hausdorff distances for dynamical systems. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6179-6200. doi: 10.3934/dcds.2020275

[13]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[14]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[15]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[16]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[17]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[18]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[19]

Daniel Franco, J. R. L. Webb. Collisionless orbits of singular and nonsingular dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 747-757. doi: 10.3934/dcds.2006.15.747

[20]

Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2455-2471. doi: 10.3934/dcds.2019104

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (199)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]