May  2021, 41(5): 2051-2070. doi: 10.3934/dcds.2020352

Cylinder absolute games on solenoids

1. 

Beijing International Center for Mathematical Research, Peking University, Beijing, 100 871, China

2. 

Current address: Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100 084, China

Received  August 2019 Published  October 2020

Fund Project: Parts of this work first appeared in a slightly different avatar in the author's PhD thesis submitted to the Tata Institute of Fundamental Research, Bombay in 2017. For a portion of that duration, financial support from CSIR, Government of India under SPM-07/858(0199)/2014- EMR-I is duly acknowledged

Let $ A $ be any affine surjective endomorphism of a solenoid ${\Sigma_{{\mathcal{P}}}} $ over the circle $ S^1 $ which is not an infinite-order translation of $ {\Sigma_{{\mathcal{P}}}}$. We prove the existence of a cylinder absolute winning (CAW) subset $ F \subseteq {\Sigma_{{\mathcal{P}}}} $ with the property that for any $ x \in F $, the orbit closure $ \overline{\{ A^{\ell} x \mid \ell \in {\mathbb{N}} \}} $ does not contain any periodic orbits. A measure $ \mu $ on a metric space is said to be Federer if for all small enough balls around any generic point with respect to $ \mu $, the measure grows by at most some constant multiple on doubling the radius of the ball. The class of infinite solenoids considered in this paper provides, to the best of our knowledge, some of the early natural examples of non-Federer spaces where absolute games can be played and won. Dimension maximality and incompressibility of CAW sets is also discussed for a number of possibilities in addition to their winning nature for the games known from before.

Citation: L. Singhal. Cylinder absolute games on solenoids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (5) : 2051-2070. doi: 10.3934/dcds.2020352
References:
[1]

J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp. doi: 10.1016/j.aim.2019.106743.  Google Scholar

[2]

C. S. Aravinda, Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.  doi: 10.1017/S0305004100072777.  Google Scholar

[3]

D. BadziahinA. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.  doi: 10.4007/annals.2011.174.3.9.  Google Scholar

[4]

D. Berend, Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.  doi: 10.1090/S0002-9947-1985-0779072-7.  Google Scholar

[5]

R. BroderickL. Fishman and D. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.  doi: 10.1017/S0143385710000374.  Google Scholar

[6]

R. BroderickL. FishmanD. KleinbockA. Reich and B. Weiss, The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.  doi: 10.1017/S0305004112000242.  Google Scholar

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660.   Google Scholar

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.  doi: 10.1017/S0143385700004673.  Google Scholar

[9]

S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86. doi: 10.1017/CBO9780511661983.006.  Google Scholar

[10]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[11]

L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp. doi: 10.1090/memo/1215.  Google Scholar

[12]

S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239.  Google Scholar

[13]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172. doi: 10.1090/trans2/171/11.  Google Scholar

[14]

D. Kleinbock and T. Ly, Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.  doi: 10.1016/j.jnt.2015.12.014.  Google Scholar

[15]

D. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.  doi: 10.1016/j.aim.2009.09.018.  Google Scholar

[16]

S. Kristensen, Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.  doi: 10.5802/jtnb.552.  Google Scholar

[17]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.  doi: 10.1017/S0143385700004545.  Google Scholar

[18]

C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.  doi: 10.1007/s00039-010-0078-3.  Google Scholar

[19] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007.   Google Scholar
[20]

W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.  doi: 10.1090/S0002-9947-1966-0195595-4.  Google Scholar

[21]

S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145. Google Scholar

[22]

S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152. Google Scholar

[23]

A. M. Wilson, On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.  doi: 10.1090/S0002-9939-1976-0390181-7.  Google Scholar

show all references

References:
[1]

J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp. doi: 10.1016/j.aim.2019.106743.  Google Scholar

[2]

C. S. Aravinda, Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.  doi: 10.1017/S0305004100072777.  Google Scholar

[3]

D. BadziahinA. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.  doi: 10.4007/annals.2011.174.3.9.  Google Scholar

[4]

D. Berend, Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.  doi: 10.1090/S0002-9947-1985-0779072-7.  Google Scholar

[5]

R. BroderickL. Fishman and D. Kleinbock, Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.  doi: 10.1017/S0143385710000374.  Google Scholar

[6]

R. BroderickL. FishmanD. KleinbockA. Reich and B. Weiss, The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.  doi: 10.1017/S0305004112000242.  Google Scholar

[7]

S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660.   Google Scholar

[8]

S. G. Dani, On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.  doi: 10.1017/S0143385700004673.  Google Scholar

[9]

S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86. doi: 10.1017/CBO9780511661983.006.  Google Scholar

[10]

K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[11]

L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp. doi: 10.1090/memo/1215.  Google Scholar

[12]

S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239.  Google Scholar

[13]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172. doi: 10.1090/trans2/171/11.  Google Scholar

[14]

D. Kleinbock and T. Ly, Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.  doi: 10.1016/j.jnt.2015.12.014.  Google Scholar

[15]

D. Kleinbock and B. Weiss, Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.  doi: 10.1016/j.aim.2009.09.018.  Google Scholar

[16]

S. Kristensen, Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.  doi: 10.5802/jtnb.552.  Google Scholar

[17]

D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.  doi: 10.1017/S0143385700004545.  Google Scholar

[18]

C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.  doi: 10.1007/s00039-010-0078-3.  Google Scholar

[19] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007.   Google Scholar
[20]

W. M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.  doi: 10.1090/S0002-9947-1966-0195595-4.  Google Scholar

[21]

S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145. Google Scholar

[22]

S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152. Google Scholar

[23]

A. M. Wilson, On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.  doi: 10.1090/S0002-9939-1976-0390181-7.  Google Scholar

[1]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[4]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[7]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[8]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[9]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[10]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[11]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[12]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[13]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[14]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[15]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[16]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[17]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[18]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[19]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[20]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]