May  2021, 41(5): 2071-2094. doi: 10.3934/dcds.2020353

Entropy conjugacy for Markov multi-maps of the interval

1. 

Department of Mathematics, Christopher Newport University, Newport News, VA 23606, USA

2. 

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

* Corresponding author: Kevin McGoff

Received  October 2019 Revised  June 2020 Published  October 2020

We consider a class $ \mathcal{F} $ of Markov multi-maps on the unit interval. Any multi-map gives rise to a space of trajectories, which is a closed, shift-invariant subset of $ [0, 1]^{\mathbb{Z}_+} $. For a multi-map in $ \mathcal{F} $, we show that the space of trajectories is (Borel) entropy conjugate to an associated shift of finite type. Additionally, we characterize the set of numbers that can be obtained as the topological entropy of a multi-map in $ \mathcal{F} $.

Citation: James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete & Continuous Dynamical Systems - A, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353
References:
[1]

E. Akin, The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. doi: 10.1090/gsm/001.  Google Scholar

[2]

L. Alvin and J. P. Kelly, Topological entropy of Markov set-valued functions, to appear in Ergodic Theory and Dynamical Systems.  Google Scholar

[3]

L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits, Topology Appl., 241 (2018), 102-114.  doi: 10.1016/j.topol.2018.03.035.  Google Scholar

[4]

W. BahsounC. Bose and A. Quas, Deterministic representation for position-dependent random maps, Discrete & Continuous Dynamical Systems - A, 22 (2008), 529-540.  doi: 10.3934/dcds.2008.22.529.  Google Scholar

[5]

I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc., 39 (2016), 839-848.  doi: 10.1007/s40840-015-0187-0.  Google Scholar

[6]

I. Banič and M. črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math., 44 (2018), 695-707.   Google Scholar

[7]

R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1979), 1-17.  doi: 10.1007/BF01941319.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[10]

J. Buzzi, Exponential decay of correlations for random lasota–yorke maps, Communications in mathematical physics, 208 (1999), 25-54.  doi: 10.1007/s002200050746.  Google Scholar

[11]

W. Cordeiro and M. J. Pacífico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[12]

M. črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III, 51 (2016), 491-501.  doi: 10.3336/gm.51.2.14.  Google Scholar

[13]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^2$, Topology Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[14]

G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), 1029-1052.  doi: 10.1088/0951-7715/12/4/318.  Google Scholar

[15]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics. Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'IHÉS, 51 (1980), 137–173.  Google Scholar

[17]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.   Google Scholar

[18]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems, 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[19]

D. A. Lind, The entropies of topological markov shifts and a related class of algebraic integers, Ergodic Theory and Dynamical Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge university press, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[22]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[23]

S. Pelikan, Invariant densities for random maps of the interval, Transactions of the American Mathematical Society, 281 (1984), 813-825.  doi: 10.1090/S0002-9947-1984-0722776-1.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, volume 79., Springer-Verlag, New York-Berlin, 1982.  Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. doi: 10.1090/gsm/001.  Google Scholar

[2]

L. Alvin and J. P. Kelly, Topological entropy of Markov set-valued functions, to appear in Ergodic Theory and Dynamical Systems.  Google Scholar

[3]

L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits, Topology Appl., 241 (2018), 102-114.  doi: 10.1016/j.topol.2018.03.035.  Google Scholar

[4]

W. BahsounC. Bose and A. Quas, Deterministic representation for position-dependent random maps, Discrete & Continuous Dynamical Systems - A, 22 (2008), 529-540.  doi: 10.3934/dcds.2008.22.529.  Google Scholar

[5]

I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc., 39 (2016), 839-848.  doi: 10.1007/s40840-015-0187-0.  Google Scholar

[6]

I. Banič and M. črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math., 44 (2018), 695-707.   Google Scholar

[7]

R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1979), 1-17.  doi: 10.1007/BF01941319.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[10]

J. Buzzi, Exponential decay of correlations for random lasota–yorke maps, Communications in mathematical physics, 208 (1999), 25-54.  doi: 10.1007/s002200050746.  Google Scholar

[11]

W. Cordeiro and M. J. Pacífico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[12]

M. črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III, 51 (2016), 491-501.  doi: 10.3336/gm.51.2.14.  Google Scholar

[13]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^2$, Topology Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[14]

G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), 1029-1052.  doi: 10.1088/0951-7715/12/4/318.  Google Scholar

[15]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics. Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'IHÉS, 51 (1980), 137–173.  Google Scholar

[17]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.   Google Scholar

[18]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems, 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[19]

D. A. Lind, The entropies of topological markov shifts and a related class of algebraic integers, Ergodic Theory and Dynamical Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge university press, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[22]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[23]

S. Pelikan, Invariant densities for random maps of the interval, Transactions of the American Mathematical Society, 281 (1984), 813-825.  doi: 10.1090/S0002-9947-1984-0722776-1.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, volume 79., Springer-Verlag, New York-Berlin, 1982.  Google Scholar

Figure 1.  The graph of a Markov multi-map and its corresponding adjacency matrix
Figure 2.  Markov multi-map from Example 9.1
Figure 3.  Markov multi-maps from Example 10.2 (left) and Example 10.3 (right)
[1]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[4]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[5]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[6]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[9]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[10]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[11]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[12]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[13]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[14]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[15]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[16]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[17]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[18]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[19]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[20]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (160)
  • Cited by (0)

Other articles
by authors

[Back to Top]