-
Previous Article
Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
- DCDS Home
- This Issue
-
Next Article
Entropy conjugacy for Markov multi-maps of the interval
Minimal period solutions in asymptotically linear Hamiltonian system with symmetries
1. | School of Mathematical Sciences, Sun Yat-Sen University, Guangzhou 510300, China |
2. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
In this paper, applying the Maslov-type index theory for periodic orbits and brake orbits, we study the minimal period problems in asymptotically linear Hamiltonian systems with different symmetries. For the asymptotically linear semipositive even Hamiltonian systems, we prove that for any given $ T>0 $, there exists a central symmetric periodic solution with minimal period $ T $. Moreover, if the Hamiltonian systems are also reversible, we prove the existence of a central symmetric brake orbit with minimal period being either $ T $ or $ T/3 $. Also we give some other lower bound estimations for brake orbits case.
References:
[1] |
H. Amann and E. Zehnder,
Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.
|
[2] |
H. Amann and E. Zehnder,
Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.
doi: 10.1007/BF01298187. |
[3] |
A. Ambrosetti and G. Mancini,
Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.
doi: 10.1007/BF01450713. |
[4] |
S. E. Cappel, R. Lee and E. Y. Miller,
On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[5] |
K. Chang,
Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.
doi: 10.1002/cpa.3160340503. |
[6] |
K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[7] |
K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117.
doi: 10.1016/S0294-1449(97)80150-3. |
[8] |
F. Clark and I. Ekeland,
Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.
doi: 10.1002/cpa.3160330202. |
[9] |
D. Dong and Y. Long,
The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.
doi: 10.1090/S0002-9947-97-01718-2. |
[10] |
J. J. Duistermaat,
On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[11] |
I. Ekeland and H. Hofer,
Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.
doi: 10.1007/BF01388776. |
[12] |
Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar |
[13] |
G. Fei and Q. Qiu,
Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.
doi: 10.1016/0362-546X(95)00077-9. |
[14] |
G. Fei and Q. Qiu,
Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.
|
[15] |
N. Ghoussoub,
Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.
doi: 10.1515/crll.1991.417.27. |
[16] |
L. Hörmander,
Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.
doi: 10.1007/BF02572374. |
[17] |
S. Li and J. Liu,
Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[18] |
C. Liu,
Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.
doi: 10.2140/pjm.2007.232.233. |
[19] |
C. Liu,
Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.
doi: 10.1515/ans-2007-0107. |
[20] |
C. Liu,
Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.
doi: 10.3934/dcds.2010.27.337. |
[21] |
C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021.
doi: 10.1016/j.jde.2014.05.006. |
[22] |
C. Liu and D. Zhang,
Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.
doi: 10.1002/cpa.21525. |
[23] |
C. Liu and B. Zhou,
Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.
doi: 10.1007/s11464-017-0627-2. |
[24] |
Y. Long,
Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.
|
[25] |
Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626.
doi: 10.1016/S0294-1449(16)30199-8. |
[26] |
Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002.
doi: 10.1007/978-3-0348-8175-3. |
[27] |
Y. Long, D. Zhang and C. Zhu,
Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.
doi: 10.1016/j.aim.2005.05.005. |
[28] |
J. Robin and D. Salamon,
The Maslov index for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[29] |
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986.
doi: 10.1090/cbms/065. |
[30] |
D. Zhang,
Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.
doi: 10.1016/j.jde.2008.04.020. |
[31] |
D. Zhang,
Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.
doi: 10.1007/s11425-013-4598-9. |
[32] |
D. Zhang,
Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.
doi: 10.3934/dcds.2015.35.2227. |
show all references
References:
[1] |
H. Amann and E. Zehnder,
Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.
|
[2] |
H. Amann and E. Zehnder,
Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.
doi: 10.1007/BF01298187. |
[3] |
A. Ambrosetti and G. Mancini,
Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.
doi: 10.1007/BF01450713. |
[4] |
S. E. Cappel, R. Lee and E. Y. Miller,
On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[5] |
K. Chang,
Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.
doi: 10.1002/cpa.3160340503. |
[6] |
K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993.
doi: 10.1007/978-1-4612-0385-8. |
[7] |
K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117.
doi: 10.1016/S0294-1449(97)80150-3. |
[8] |
F. Clark and I. Ekeland,
Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.
doi: 10.1002/cpa.3160330202. |
[9] |
D. Dong and Y. Long,
The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.
doi: 10.1090/S0002-9947-97-01718-2. |
[10] |
J. J. Duistermaat,
On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[11] |
I. Ekeland and H. Hofer,
Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.
doi: 10.1007/BF01388776. |
[12] |
Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar |
[13] |
G. Fei and Q. Qiu,
Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.
doi: 10.1016/0362-546X(95)00077-9. |
[14] |
G. Fei and Q. Qiu,
Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.
|
[15] |
N. Ghoussoub,
Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.
doi: 10.1515/crll.1991.417.27. |
[16] |
L. Hörmander,
Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.
doi: 10.1007/BF02572374. |
[17] |
S. Li and J. Liu,
Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[18] |
C. Liu,
Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.
doi: 10.2140/pjm.2007.232.233. |
[19] |
C. Liu,
Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.
doi: 10.1515/ans-2007-0107. |
[20] |
C. Liu,
Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.
doi: 10.3934/dcds.2010.27.337. |
[21] |
C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021.
doi: 10.1016/j.jde.2014.05.006. |
[22] |
C. Liu and D. Zhang,
Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.
doi: 10.1002/cpa.21525. |
[23] |
C. Liu and B. Zhou,
Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.
doi: 10.1007/s11464-017-0627-2. |
[24] |
Y. Long,
Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.
|
[25] |
Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626.
doi: 10.1016/S0294-1449(16)30199-8. |
[26] |
Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002.
doi: 10.1007/978-3-0348-8175-3. |
[27] |
Y. Long, D. Zhang and C. Zhu,
Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.
doi: 10.1016/j.aim.2005.05.005. |
[28] |
J. Robin and D. Salamon,
The Maslov index for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[29] |
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986.
doi: 10.1090/cbms/065. |
[30] |
D. Zhang,
Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.
doi: 10.1016/j.jde.2008.04.020. |
[31] |
D. Zhang,
Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.
doi: 10.1007/s11425-013-4598-9. |
[32] |
D. Zhang,
Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.
doi: 10.3934/dcds.2015.35.2227. |
[1] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[4] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[5] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[6] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[8] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[11] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[12] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[13] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[14] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[15] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[16] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[17] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[18] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[19] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[20] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]