May  2021, 41(5): 2095-2124. doi: 10.3934/dcds.2020354

Minimal period solutions in asymptotically linear Hamiltonian system with symmetries

1. 

School of Mathematical Sciences, Sun Yat-Sen University, Guangzhou 510300, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Duanzhi Zhang

Received  November 2019 Revised  May 2020 Published  October 2020

Fund Project: The first author is supported by the supported by the Fundamental Research Funds for the Central Universities (34000-31610273), Sun Yat-Sen University. The second author is supported by the NSF of China (17190271, 11422103, 11771341) and Nankai University

In this paper, applying the Maslov-type index theory for periodic orbits and brake orbits, we study the minimal period problems in asymptotically linear Hamiltonian systems with different symmetries. For the asymptotically linear semipositive even Hamiltonian systems, we prove that for any given $ T>0 $, there exists a central symmetric periodic solution with minimal period $ T $. Moreover, if the Hamiltonian systems are also reversible, we prove the existence of a central symmetric brake orbit with minimal period being either $ T $ or $ T/3 $. Also we give some other lower bound estimations for brake orbits case.

Citation: Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete & Continuous Dynamical Systems - A, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354
References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.   Google Scholar

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.  Google Scholar

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.  Google Scholar

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.  Google Scholar

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.  Google Scholar

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.  Google Scholar

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.  Google Scholar

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.  Google Scholar

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.   Google Scholar

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.  Google Scholar

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.  Google Scholar

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.  Google Scholar

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.  Google Scholar

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.  Google Scholar

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.  Google Scholar

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.  Google Scholar

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.   Google Scholar

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.  Google Scholar

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.  Google Scholar

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.  Google Scholar

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.  Google Scholar

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.  Google Scholar

show all references

References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.   Google Scholar

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.  Google Scholar

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.  Google Scholar

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.  Google Scholar

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.  Google Scholar

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.  Google Scholar

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.  Google Scholar

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.  Google Scholar

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.   Google Scholar

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.  Google Scholar

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.  Google Scholar

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.  Google Scholar

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.  Google Scholar

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.  Google Scholar

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.  Google Scholar

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.  Google Scholar

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.   Google Scholar

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.  Google Scholar

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.  Google Scholar

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.  Google Scholar

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.  Google Scholar

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.  Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[5]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[6]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[7]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[8]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[11]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[12]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[13]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[14]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[15]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (66)
  • HTML views (159)
  • Cited by (0)

Other articles
by authors

[Back to Top]