• Previous Article
    Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
  • DCDS Home
  • This Issue
  • Next Article
    Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential
doi: 10.3934/dcds.2020354

Minimal period solutions in asymptotically linear Hamiltonian system with symmetries

1. 

School of Mathematical Sciences, Sun Yat-Sen University, Guangzhou 510300, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Duanzhi Zhang

Received  November 2019 Revised  May 2020 Published  October 2020

Fund Project: The first author is supported by the supported by the Fundamental Research Funds for the Central Universities (34000-31610273), Sun Yat-Sen University. The second author is supported by the NSF of China (17190271, 11422103, 11771341) and Nankai University

In this paper, applying the Maslov-type index theory for periodic orbits and brake orbits, we study the minimal period problems in asymptotically linear Hamiltonian systems with different symmetries. For the asymptotically linear semipositive even Hamiltonian systems, we prove that for any given $ T>0 $, there exists a central symmetric periodic solution with minimal period $ T $. Moreover, if the Hamiltonian systems are also reversible, we prove the existence of a central symmetric brake orbit with minimal period being either $ T $ or $ T/3 $. Also we give some other lower bound estimations for brake orbits case.

Citation: Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020354
References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.   Google Scholar

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.  Google Scholar

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.  Google Scholar

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.  Google Scholar

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.  Google Scholar

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.  Google Scholar

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.  Google Scholar

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.  Google Scholar

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.   Google Scholar

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.  Google Scholar

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.  Google Scholar

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.  Google Scholar

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.  Google Scholar

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.  Google Scholar

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.  Google Scholar

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.  Google Scholar

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.   Google Scholar

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.  Google Scholar

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.  Google Scholar

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.  Google Scholar

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.  Google Scholar

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.  Google Scholar

show all references

References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603.   Google Scholar

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.  Google Scholar

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.  Google Scholar

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.  Google Scholar

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.  Google Scholar

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.  Google Scholar

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.  Google Scholar

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.  Google Scholar

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted. Google Scholar

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.  Google Scholar

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372.   Google Scholar

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.  Google Scholar

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.  Google Scholar

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.  Google Scholar

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.  Google Scholar

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.  Google Scholar

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.  Google Scholar

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.  Google Scholar

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419.   Google Scholar

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.  Google Scholar

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.  Google Scholar

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.  Google Scholar

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.  Google Scholar

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[6]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[16]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.338

Article outline

[Back to Top]