-
Previous Article
Thermodynamic formalism of $ \text{GL}_2(\mathbb{R}) $-cocycles with canonical holonomies
- DCDS Home
- This Issue
-
Next Article
Minimal period solutions in asymptotically linear Hamiltonian system with symmetries
Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
1. | Instituto de Matemática Luis A. Santaló (IMAS), CONICET, Departamento de Matemática, FCEN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, C1428EGA, Av. Cantilo s/n, Buenos Aires, Argentina |
2. | Instituto de Matemática Aplicada San luis (IMASL), Ejército de los Andes 950, D5700HHW, San Luis, Argentina |
In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the $ p- $fractional laplacian when the fractional parameter $ s $ goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when $ p $ goes to $ \infty $. Finally we analyze other eigenvalue problems not previously covered in the literature.
References:
[1] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
T. Champion and L. De Pascale,
Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.
doi: 10.1017/S0308210506000667. |
[4] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[5] |
L. M. Del Pezzo, J. D. Rossi and A. M. Salort,
Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.
doi: 10.1017/S0308210517000361. |
[6] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[7] |
J. Fernández Bonder, J. P. Pinasco and A. M. Salort,
Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.
doi: 10.1017/S0004972715001094. |
[8] |
J. Fernández Bonder, A. Ritorto and A. M. Salort,
$H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.
doi: 10.1137/16M1080215. |
[9] |
J. Fernández Bonder and A. M. Salort,
Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.
doi: 10.1016/j.jfa.2019.04.003. |
[10] |
J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp.
doi: 10.1016/j.na.2020.112080. |
[11] |
M. Focardi,
Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.
doi: 10.1016/j.aim.2010.06.014. |
[12] |
_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658.
doi: 10.1002/mma.2551. |
[13] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.
|
[14] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[15] |
A. Piatnitski and E. Zhizhina,
Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.
doi: 10.1137/16M1072292. |
[16] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[17] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
doi: 10.1090/cbms/065. |
[18] |
R. W. Schwab,
Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.
doi: 10.1137/080737897. |
[19] |
_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198.
doi: 10.1080/03605302.2012.741176. |
show all references
References:
[1] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455. |
[2] |
L. Brasco, E. Parini and M. Squassina,
Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.
doi: 10.3934/dcds.2016.36.1813. |
[3] |
T. Champion and L. De Pascale,
Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.
doi: 10.1017/S0308210506000667. |
[4] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[5] |
L. M. Del Pezzo, J. D. Rossi and A. M. Salort,
Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.
doi: 10.1017/S0308210517000361. |
[6] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[7] |
J. Fernández Bonder, J. P. Pinasco and A. M. Salort,
Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.
doi: 10.1017/S0004972715001094. |
[8] |
J. Fernández Bonder, A. Ritorto and A. M. Salort,
$H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.
doi: 10.1137/16M1080215. |
[9] |
J. Fernández Bonder and A. M. Salort,
Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.
doi: 10.1016/j.jfa.2019.04.003. |
[10] |
J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp.
doi: 10.1016/j.na.2020.112080. |
[11] |
M. Focardi,
Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.
doi: 10.1016/j.aim.2010.06.014. |
[12] |
_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658.
doi: 10.1002/mma.2551. |
[13] |
G. Franzina and G. Palatucci,
Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.
|
[14] |
E. Lindgren and P. Lindqvist,
Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.
doi: 10.1007/s00526-013-0600-1. |
[15] |
A. Piatnitski and E. Zhizhina,
Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.
doi: 10.1137/16M1072292. |
[16] |
A. C. Ponce,
A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.
doi: 10.1007/s00526-003-0195-z. |
[17] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
doi: 10.1090/cbms/065. |
[18] |
R. W. Schwab,
Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.
doi: 10.1137/080737897. |
[19] |
_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198.
doi: 10.1080/03605302.2012.741176. |
[1] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[2] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[3] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[4] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[5] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[6] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[7] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[8] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[9] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[18] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[19] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[20] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]