May  2021, 41(5): 2125-2140. doi: 10.3934/dcds.2020355

Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems

1. 

Instituto de Matemática Luis A. Santaló (IMAS), CONICET, Departamento de Matemática, FCEN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, C1428EGA, Av. Cantilo s/n, Buenos Aires, Argentina

2. 

Instituto de Matemática Aplicada San luis (IMASL), Ejército de los Andes 950, D5700HHW, San Luis, Argentina

* Corresponding author: J. Fernández Bonder

Received  January 2020 Revised  September 2020 Published  May 2021 Early access  October 2020

In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the $ p- $fractional laplacian when the fractional parameter $ s $ goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when $ p $ goes to $ \infty $. Finally we analyze other eigenvalue problems not previously covered in the literature.

Citation: Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355
References:
[1]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455.  Google Scholar

[2]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[3]

T. Champion and L. De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.  doi: 10.1017/S0308210506000667.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

L. M. Del PezzoJ. D. Rossi and A. M. Salort, Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.  doi: 10.1017/S0308210517000361.  Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

J. Fernández BonderJ. P. Pinasco and A. M. Salort, Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.  doi: 10.1017/S0004972715001094.  Google Scholar

[8]

J. Fernández BonderA. Ritorto and A. M. Salort, $H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.  doi: 10.1137/16M1080215.  Google Scholar

[9]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.  Google Scholar

[10]

J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp. doi: 10.1016/j.na.2020.112080.  Google Scholar

[11]

M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[12]

_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658. doi: 10.1002/mma.2551.  Google Scholar

[13]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[14]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[15]

A. Piatnitski and E. Zhizhina, Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.  doi: 10.1137/16M1072292.  Google Scholar

[16]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[18]

R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.  doi: 10.1137/080737897.  Google Scholar

[19]

_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198. doi: 10.1080/03605302.2012.741176.  Google Scholar

show all references

References:
[1]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455.  Google Scholar

[2]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[3]

T. Champion and L. De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.  doi: 10.1017/S0308210506000667.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

L. M. Del PezzoJ. D. Rossi and A. M. Salort, Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.  doi: 10.1017/S0308210517000361.  Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

J. Fernández BonderJ. P. Pinasco and A. M. Salort, Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.  doi: 10.1017/S0004972715001094.  Google Scholar

[8]

J. Fernández BonderA. Ritorto and A. M. Salort, $H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.  doi: 10.1137/16M1080215.  Google Scholar

[9]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.  Google Scholar

[10]

J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp. doi: 10.1016/j.na.2020.112080.  Google Scholar

[11]

M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[12]

_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658. doi: 10.1002/mma.2551.  Google Scholar

[13]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[14]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[15]

A. Piatnitski and E. Zhizhina, Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.  doi: 10.1137/16M1072292.  Google Scholar

[16]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[18]

R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.  doi: 10.1137/080737897.  Google Scholar

[19]

_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198. doi: 10.1080/03605302.2012.741176.  Google Scholar

[1]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[2]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[3]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[4]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[5]

Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021117

[6]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[7]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[8]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[9]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[10]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[11]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[12]

Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469

[13]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

[14]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[15]

Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839

[16]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[17]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[18]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[19]

Kanishka Perera, Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 743-753. doi: 10.3934/dcds.2005.13.743

[20]

Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021033

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (125)
  • HTML views (176)
  • Cited by (0)

[Back to Top]