doi: 10.3934/dcds.2020355

Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems

1. 

Instituto de Matemática Luis A. Santaló (IMAS), CONICET, Departamento de Matemática, FCEN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, C1428EGA, Av. Cantilo s/n, Buenos Aires, Argentina

2. 

Instituto de Matemática Aplicada San luis (IMASL), Ejército de los Andes 950, D5700HHW, San Luis, Argentina

* Corresponding author: J. Fernández Bonder

Received  January 2020 Revised  September 2020 Published  October 2020

In this paper we analyze the asymptotic behavior of several fractional eigenvalue problems by means of Gamma-convergence methods. This method allows us to treat different eigenvalue problems under a unified framework. We are able to recover some known results for the behavior of the eigenvalues of the $ p- $fractional laplacian when the fractional parameter $ s $ goes to 1, and to extend some known results for the behavior of the same eigenvalue problem when $ p $ goes to $ \infty $. Finally we analyze other eigenvalue problems not previously covered in the literature.

Citation: Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020355
References:
[1]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455.  Google Scholar

[2]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[3]

T. Champion and L. De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.  doi: 10.1017/S0308210506000667.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

L. M. Del PezzoJ. D. Rossi and A. M. Salort, Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.  doi: 10.1017/S0308210517000361.  Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

J. Fernández BonderJ. P. Pinasco and A. M. Salort, Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.  doi: 10.1017/S0004972715001094.  Google Scholar

[8]

J. Fernández BonderA. Ritorto and A. M. Salort, $H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.  doi: 10.1137/16M1080215.  Google Scholar

[9]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.  Google Scholar

[10]

J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp. doi: 10.1016/j.na.2020.112080.  Google Scholar

[11]

M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[12]

_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658. doi: 10.1002/mma.2551.  Google Scholar

[13]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[14]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[15]

A. Piatnitski and E. Zhizhina, Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.  doi: 10.1137/16M1072292.  Google Scholar

[16]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[18]

R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.  doi: 10.1137/080737897.  Google Scholar

[19]

_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198. doi: 10.1080/03605302.2012.741176.  Google Scholar

show all references

References:
[1]

J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001,439–455.  Google Scholar

[2]

L. BrascoE. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1813-1845.  doi: 10.3934/dcds.2016.36.1813.  Google Scholar

[3]

T. Champion and L. De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving $p-$laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1179-1195.  doi: 10.1017/S0308210506000667.  Google Scholar

[4]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

L. M. Del PezzoJ. D. Rossi and A. M. Salort, Fractional eigenvalue problems that approximate steklov eigenvalue problems, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148 (2018), 499-516.  doi: 10.1017/S0308210517000361.  Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[7]

J. Fernández BonderJ. P. Pinasco and A. M. Salort, Eigenvalue homogenisation problem with indefinite weights, Bull. Aust. Math. Soc., 93 (2016), 113-127.  doi: 10.1017/S0004972715001094.  Google Scholar

[8]

J. Fernández BonderA. Ritorto and A. M. Salort, $H$-convergence result for nonlocal elliptic-type problems via Tartar's method, SIAM J. Math. Anal., 49 (2017), 2387-2408.  doi: 10.1137/16M1080215.  Google Scholar

[9]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.  Google Scholar

[10]

J. Fernández Bonder and A. M. Salort, Stability of solutions for nonlocal problems, Nonlinear Analysis, 200 (2020), 112080, 13 pp. doi: 10.1016/j.na.2020.112080.  Google Scholar

[11]

M. Focardi, Aperiodic fractional obstacle problems, Adv. Math., 225 (2010), 3502-3544.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[12]

_____, Γ-convergence: A tool to investigate physical phenomena across scales, Math. Methods Appl. Sci., 35 (2012), 1613-1658. doi: 10.1002/mma.2551.  Google Scholar

[13]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[14]

E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.  doi: 10.1007/s00526-013-0600-1.  Google Scholar

[15]

A. Piatnitski and E. Zhizhina, Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., 49 (2017), 64-81.  doi: 10.1137/16M1072292.  Google Scholar

[16]

A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var. Partial Differential Equations, 19 (2004), 229-255.  doi: 10.1007/s00526-003-0195-z.  Google Scholar

[17]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[18]

R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.  doi: 10.1137/080737897.  Google Scholar

[19]

_____, Stochastic homogenization for some nonlinear integro-differential equations, Comm. Partial Differential Equations, 38 (2013), 171-198. doi: 10.1080/03605302.2012.741176.  Google Scholar

[1]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[7]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Article outline

[Back to Top]