-
Previous Article
Radially symmetric stationary wave for two-dimensional Burgers equation
- DCDS Home
- This Issue
-
Next Article
Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems
Thermodynamic formalism of $ \text{GL}_2(\mathbb{R}) $-cocycles with canonical holonomies
1. | School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA |
2. | Department of Mathematics, University of Chicago, Chicago, IL 60637, USA |
We study the norm potentials of Hölder continuous $ \text{GL}_2(\mathbb{R}) $-cocycles over hyperbolic systems whose canonical holonomies converge and are Hölder continuous. Such cocycles include locally constant $ \text{GL}_2(\mathbb{R}) $-cocycles as well as fiber-bunched $ \text{GL}_2(\mathbb{R}) $-cocycles. We show that the norm potentials of irreducible such cocycles have unique equilibrium states. Among the reducible cocycles, we provide a characterization for cocycles whose norm potentials have more than one equilibrium states.
References:
[1] |
L. Barreira,
A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergodic Theory and Dynamical Systems, 16 (1996), 871-927.
doi: 10.1017/S0143385700010117. |
[2] |
J. Bochi and E. Garibaldi,
Extremal norms for fiber-bunched cocycles, Journal de L'École Polytechnique - Mathématiques, 6 (2019), 947-1004.
doi: 10.5802/jep.109. |
[3] |
C. Bonatti and M. Viana,
Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory and Dynamical Systems, 24 (2004), 1295-1330.
doi: 10.1017/S0143385703000695. |
[4] |
R. Bowen,
Entropy-expansive maps, Transactions of the American Mathematical Society, 164 (1972), 323-331.
doi: 10.1090/S0002-9947-1972-0285689-X. |
[5] |
R. Bowen,
Some systems with unique equilibrium states, Theory of Computing Systems, 8 (1974), 193-202.
doi: 10.1007/BF01762666. |
[6] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, 2008. |
[7] |
Y. Cao, D. Feng and W. Huang,
The thermodynamic formalism for sub-additive potentials, Discrete and Continuous Dynamical Systems, 20 (2008), 639-657.
doi: 10.3934/dcds.2008.20.639. |
[8] |
Y. Cao, Y. Pesin and Y. Zhao,
Dimension estimates for non-conformal repellers and continuity of sub-additive topological pressure, Geometric and Functional Analysis, 29 (2019), 1325-1368.
doi: 10.1007/s00039-019-00510-7. |
[9] |
B. Call and K. Park, The K-property for subadditive equilibrium states, to appear in Dynamical Systems: An International Journal, arXiv: 2004.13087. |
[10] |
D. Feng,
Equilibrium states for factor maps between subshifts, Advances in Mathematics, 226 (2011), 2470-2502.
doi: 10.1016/j.aim.2010.09.012. |
[11] |
D. Feng and A. Käenmäki,
Equilibrium states of the pressure function for products of matrices, Discrete and Continuous Dynamical Systems, 30 (2011), 699-708.
doi: 10.3934/dcds.2011.30.699. |
[12] |
D. Feng and P. Shmerkin,
Non-conformal repellers and the continuity of pressure for matrix cocycles, Geometric and Functional Analysis, 24 (2014), 1101-1128.
doi: 10.1007/s00039-014-0274-7. |
[13] |
B. Kalinin and V. Sadovskaya,
Linear cocycles over hyperbolic systems and criteria of conformality, Journal of Modern Dynamics, 4 (2010), 419-441.
doi: 10.3934/jmd.2010.4.419. |
[14] |
B. Kalinin and V. Sadovskaya,
Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, 167 (2013), 167-188.
doi: 10.1007/s10711-012-9808-z. |
[15] |
M. Misiurewicz,
Topological conditional entropy, Studia Mathematica, 55 (1976), 175-200.
doi: 10.4064/sm-55-2-175-200. |
[16] |
K. Park,
Quasi-multiplicativity of typical cocycles, Communications in Mathematical Physics, 376 (2020), 1957-2004.
doi: 10.1007/s00220-020-03701-8. |
[17] |
M. Viana,
Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Mathematics, 167 (2008), 643-680.
doi: 10.4007/annals.2008.167.643. |
[18] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
show all references
References:
[1] |
L. Barreira,
A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergodic Theory and Dynamical Systems, 16 (1996), 871-927.
doi: 10.1017/S0143385700010117. |
[2] |
J. Bochi and E. Garibaldi,
Extremal norms for fiber-bunched cocycles, Journal de L'École Polytechnique - Mathématiques, 6 (2019), 947-1004.
doi: 10.5802/jep.109. |
[3] |
C. Bonatti and M. Viana,
Lyapunov exponents with multiplicity 1 for deterministic products of matrices, Ergodic Theory and Dynamical Systems, 24 (2004), 1295-1330.
doi: 10.1017/S0143385703000695. |
[4] |
R. Bowen,
Entropy-expansive maps, Transactions of the American Mathematical Society, 164 (1972), 323-331.
doi: 10.1090/S0002-9947-1972-0285689-X. |
[5] |
R. Bowen,
Some systems with unique equilibrium states, Theory of Computing Systems, 8 (1974), 193-202.
doi: 10.1007/BF01762666. |
[6] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, 2008. |
[7] |
Y. Cao, D. Feng and W. Huang,
The thermodynamic formalism for sub-additive potentials, Discrete and Continuous Dynamical Systems, 20 (2008), 639-657.
doi: 10.3934/dcds.2008.20.639. |
[8] |
Y. Cao, Y. Pesin and Y. Zhao,
Dimension estimates for non-conformal repellers and continuity of sub-additive topological pressure, Geometric and Functional Analysis, 29 (2019), 1325-1368.
doi: 10.1007/s00039-019-00510-7. |
[9] |
B. Call and K. Park, The K-property for subadditive equilibrium states, to appear in Dynamical Systems: An International Journal, arXiv: 2004.13087. |
[10] |
D. Feng,
Equilibrium states for factor maps between subshifts, Advances in Mathematics, 226 (2011), 2470-2502.
doi: 10.1016/j.aim.2010.09.012. |
[11] |
D. Feng and A. Käenmäki,
Equilibrium states of the pressure function for products of matrices, Discrete and Continuous Dynamical Systems, 30 (2011), 699-708.
doi: 10.3934/dcds.2011.30.699. |
[12] |
D. Feng and P. Shmerkin,
Non-conformal repellers and the continuity of pressure for matrix cocycles, Geometric and Functional Analysis, 24 (2014), 1101-1128.
doi: 10.1007/s00039-014-0274-7. |
[13] |
B. Kalinin and V. Sadovskaya,
Linear cocycles over hyperbolic systems and criteria of conformality, Journal of Modern Dynamics, 4 (2010), 419-441.
doi: 10.3934/jmd.2010.4.419. |
[14] |
B. Kalinin and V. Sadovskaya,
Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, 167 (2013), 167-188.
doi: 10.1007/s10711-012-9808-z. |
[15] |
M. Misiurewicz,
Topological conditional entropy, Studia Mathematica, 55 (1976), 175-200.
doi: 10.4064/sm-55-2-175-200. |
[16] |
K. Park,
Quasi-multiplicativity of typical cocycles, Communications in Mathematical Physics, 376 (2020), 1957-2004.
doi: 10.1007/s00220-020-03701-8. |
[17] |
M. Viana,
Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents, Annals of Mathematics, 167 (2008), 643-680.
doi: 10.4007/annals.2008.167.643. |
[18] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[1] |
Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279 |
[2] |
Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72 |
[3] |
Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639 |
[4] |
Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961 |
[5] |
Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995 |
[6] |
Eleonora Catsigeras, Yun Zhao. Observable optimal state points of subadditive potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1375-1388. doi: 10.3934/dcds.2013.33.1375 |
[7] |
Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018 |
[8] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131 |
[9] |
Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435 |
[10] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593 |
[11] |
Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1 |
[12] |
L. Cioletti, E. Silva, M. Stadlbauer. Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6277-6298. doi: 10.3934/dcds.2019274 |
[13] |
Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015 |
[14] |
Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821 |
[15] |
Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195 |
[16] |
Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593 |
[17] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[18] |
Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 |
[19] |
Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419 |
[20] |
V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]