May  2021, 41(5): 2167-2185. doi: 10.3934/dcds.2020357

Radially symmetric stationary wave for two-dimensional Burgers equation

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China

Received  July 2020 Published  May 2021 Early access  October 2020

We are concerned with the radially symmetric stationary wave for the exterior problem of two-dimensional Burgers equation. A sufficient and necessary condition to guarantee the existence of such a stationary wave is given and it is also shown that the stationary wave satisfies nice decay estimates and is time-asymptotically nonlinear stable under radially symmetric initial perturbation.

Citation: Huijiang Zhao, Qingsong Zhao. Radially symmetric stationary wave for two-dimensional Burgers equation. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2167-2185. doi: 10.3934/dcds.2020357
References:
[1]

L.-L. FanH.-X. LiuT. Wang and H.-J. Zhao, Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation, J. Differential Equations, 257 (2014), 3521-3553.  doi: 10.1016/j.jde.2014.07.001.  Google Scholar

[2]

I. Hashimoto, Asymptotic behavior of radially symmetric solutions for Burgers equation in several space dimensions, Nonlinear Anal, 100 (2014), 43-58.  doi: 10.1016/j.na.2014.01.004.  Google Scholar

[3]

I. Hashimoto, Behavior of solutions for radially symmetric solutions for Burgers equation with a boundary corresponding to the rarefaction wave, Osaka J. Math., 53 (2016), 799-811.   Google Scholar

[4]

I. Hashimoto, Stability of the radially symmetric stationary wave of the Burgers equation with multi-dimensional initial perturbation in exterior domain, Mathematische Nachrichten, (2020), 1-15. https: //doi.org/10.1002/mana.201900233. doi: 10.1002/mana.201900233.  Google Scholar

[5]

I. Hashimoto and A. Matsumura, Asymptotic behavior toward nonlinear waves for radially symmetric solutions of the multi-dimensional Burgers equation, J. Differential Equations, 266 (2019), 2805-2829.  doi: 10.1016/j.jde.2018.08.045.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.  doi: 10.1007/BF01212358.  Google Scholar

[7]

T.-P. LiuA. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[8]

T.-P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differential Equations, 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

T.-P. Liu and S.-H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[10]

T.-P. Liu and S.-H. Yu, Multi-dimensional wave propagation over a Burgers shock profile, Arch. Ration. Mech. Anal., 229 (2018), 231-337.  doi: 10.1007/s00205-018-1217-5.  Google Scholar

[11]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999),, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[12]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[13]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[14]

K. Nishihara, Asymptotic behaviors of solutions to viscous conservation laws via $L^2-$energy method, Adv. Math. (China), 30 (2001), 293-321.   Google Scholar

[15]

T. Yang, H.-J. Zhao and Q.-S. Zhao, Asymptotics of radially symmetric solutions for the exterior problem of multidimensional Burgers equation (in Chinese), Sci. Sin. Math., 51 (2021), 1–16, See also arXiv: 1908.03354. Google Scholar

[16]

H. Yin and H.-J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space,, Kinetic and Ralated Models, 2 (2009), 521-550.  doi: 10.3934/krm.2009.2.521.  Google Scholar

show all references

References:
[1]

L.-L. FanH.-X. LiuT. Wang and H.-J. Zhao, Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation, J. Differential Equations, 257 (2014), 3521-3553.  doi: 10.1016/j.jde.2014.07.001.  Google Scholar

[2]

I. Hashimoto, Asymptotic behavior of radially symmetric solutions for Burgers equation in several space dimensions, Nonlinear Anal, 100 (2014), 43-58.  doi: 10.1016/j.na.2014.01.004.  Google Scholar

[3]

I. Hashimoto, Behavior of solutions for radially symmetric solutions for Burgers equation with a boundary corresponding to the rarefaction wave, Osaka J. Math., 53 (2016), 799-811.   Google Scholar

[4]

I. Hashimoto, Stability of the radially symmetric stationary wave of the Burgers equation with multi-dimensional initial perturbation in exterior domain, Mathematische Nachrichten, (2020), 1-15. https: //doi.org/10.1002/mana.201900233. doi: 10.1002/mana.201900233.  Google Scholar

[5]

I. Hashimoto and A. Matsumura, Asymptotic behavior toward nonlinear waves for radially symmetric solutions of the multi-dimensional Burgers equation, J. Differential Equations, 266 (2019), 2805-2829.  doi: 10.1016/j.jde.2018.08.045.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.  doi: 10.1007/BF01212358.  Google Scholar

[7]

T.-P. LiuA. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[8]

T.-P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differential Equations, 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

T.-P. Liu and S.-H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[10]

T.-P. Liu and S.-H. Yu, Multi-dimensional wave propagation over a Burgers shock profile, Arch. Ration. Mech. Anal., 229 (2018), 231-337.  doi: 10.1007/s00205-018-1217-5.  Google Scholar

[11]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999),, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[12]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[13]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[14]

K. Nishihara, Asymptotic behaviors of solutions to viscous conservation laws via $L^2-$energy method, Adv. Math. (China), 30 (2001), 293-321.   Google Scholar

[15]

T. Yang, H.-J. Zhao and Q.-S. Zhao, Asymptotics of radially symmetric solutions for the exterior problem of multidimensional Burgers equation (in Chinese), Sci. Sin. Math., 51 (2021), 1–16, See also arXiv: 1908.03354. Google Scholar

[16]

H. Yin and H.-J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space,, Kinetic and Ralated Models, 2 (2009), 521-550.  doi: 10.3934/krm.2009.2.521.  Google Scholar

[1]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[2]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[3]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1987-2020. doi: 10.3934/cpaa.2021055

[4]

Yanbin Tang, Ming Wang. A remark on exponential stability of time-delayed Burgers equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 219-225. doi: 10.3934/dcdsb.2009.12.219

[5]

Seung-Yeal Ha, Hansol Park, Yinglong Zhang. Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 427-461. doi: 10.3934/nhm.2020026

[6]

Hui Yin, Huijiang Zhao. Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space. Kinetic & Related Models, 2009, 2 (3) : 521-550. doi: 10.3934/krm.2009.2.521

[7]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[8]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[9]

Yoshihiro Ueda, Tohru Nakamura, Shuichi Kawashima. Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinetic & Related Models, 2008, 1 (1) : 49-64. doi: 10.3934/krm.2008.1.49

[10]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[11]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[12]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic & Related Models, 2009, 2 (1) : 109-134. doi: 10.3934/krm.2009.2.109

[13]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[14]

Alireza Khatib, Liliane A. Maia. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2789-2812. doi: 10.3934/cpaa.2018132

[15]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025

[16]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[17]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[18]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[19]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[20]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (163)
  • HTML views (192)
  • Cited by (0)

Other articles
by authors

[Back to Top]