doi: 10.3934/dcds.2020357

Radially symmetric stationary wave for two-dimensional Burgers equation

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China

Received  July 2020 Published  October 2020

We are concerned with the radially symmetric stationary wave for the exterior problem of two-dimensional Burgers equation. A sufficient and necessary condition to guarantee the existence of such a stationary wave is given and it is also shown that the stationary wave satisfies nice decay estimates and is time-asymptotically nonlinear stable under radially symmetric initial perturbation.

Citation: Huijiang Zhao, Qingsong Zhao. Radially symmetric stationary wave for two-dimensional Burgers equation. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020357
References:
[1]

L.-L. FanH.-X. LiuT. Wang and H.-J. Zhao, Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation, J. Differential Equations, 257 (2014), 3521-3553.  doi: 10.1016/j.jde.2014.07.001.  Google Scholar

[2]

I. Hashimoto, Asymptotic behavior of radially symmetric solutions for Burgers equation in several space dimensions, Nonlinear Anal, 100 (2014), 43-58.  doi: 10.1016/j.na.2014.01.004.  Google Scholar

[3]

I. Hashimoto, Behavior of solutions for radially symmetric solutions for Burgers equation with a boundary corresponding to the rarefaction wave, Osaka J. Math., 53 (2016), 799-811.   Google Scholar

[4]

I. Hashimoto, Stability of the radially symmetric stationary wave of the Burgers equation with multi-dimensional initial perturbation in exterior domain, Mathematische Nachrichten, (2020), 1-15. https: //doi.org/10.1002/mana.201900233. doi: 10.1002/mana.201900233.  Google Scholar

[5]

I. Hashimoto and A. Matsumura, Asymptotic behavior toward nonlinear waves for radially symmetric solutions of the multi-dimensional Burgers equation, J. Differential Equations, 266 (2019), 2805-2829.  doi: 10.1016/j.jde.2018.08.045.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.  doi: 10.1007/BF01212358.  Google Scholar

[7]

T.-P. LiuA. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[8]

T.-P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differential Equations, 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

T.-P. Liu and S.-H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[10]

T.-P. Liu and S.-H. Yu, Multi-dimensional wave propagation over a Burgers shock profile, Arch. Ration. Mech. Anal., 229 (2018), 231-337.  doi: 10.1007/s00205-018-1217-5.  Google Scholar

[11]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999),, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[12]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[13]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[14]

K. Nishihara, Asymptotic behaviors of solutions to viscous conservation laws via $L^2-$energy method, Adv. Math. (China), 30 (2001), 293-321.   Google Scholar

[15]

T. Yang, H.-J. Zhao and Q.-S. Zhao, Asymptotics of radially symmetric solutions for the exterior problem of multidimensional Burgers equation (in Chinese), Sci. Sin. Math., 51 (2021), 1–16, See also arXiv: 1908.03354. Google Scholar

[16]

H. Yin and H.-J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space,, Kinetic and Ralated Models, 2 (2009), 521-550.  doi: 10.3934/krm.2009.2.521.  Google Scholar

show all references

References:
[1]

L.-L. FanH.-X. LiuT. Wang and H.-J. Zhao, Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation, J. Differential Equations, 257 (2014), 3521-3553.  doi: 10.1016/j.jde.2014.07.001.  Google Scholar

[2]

I. Hashimoto, Asymptotic behavior of radially symmetric solutions for Burgers equation in several space dimensions, Nonlinear Anal, 100 (2014), 43-58.  doi: 10.1016/j.na.2014.01.004.  Google Scholar

[3]

I. Hashimoto, Behavior of solutions for radially symmetric solutions for Burgers equation with a boundary corresponding to the rarefaction wave, Osaka J. Math., 53 (2016), 799-811.   Google Scholar

[4]

I. Hashimoto, Stability of the radially symmetric stationary wave of the Burgers equation with multi-dimensional initial perturbation in exterior domain, Mathematische Nachrichten, (2020), 1-15. https: //doi.org/10.1002/mana.201900233. doi: 10.1002/mana.201900233.  Google Scholar

[5]

I. Hashimoto and A. Matsumura, Asymptotic behavior toward nonlinear waves for radially symmetric solutions of the multi-dimensional Burgers equation, J. Differential Equations, 266 (2019), 2805-2829.  doi: 10.1016/j.jde.2018.08.045.  Google Scholar

[6]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion, Commun. Math. Phys., 101 (1985), 97-127.  doi: 10.1007/BF01212358.  Google Scholar

[7]

T.-P. LiuA. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[8]

T.-P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differential Equations, 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[9]

T.-P. Liu and S.-H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[10]

T.-P. Liu and S.-H. Yu, Multi-dimensional wave propagation over a Burgers shock profile, Arch. Ration. Mech. Anal., 229 (2018), 231-337.  doi: 10.1007/s00205-018-1217-5.  Google Scholar

[11]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, IMS Conference on Differential Equations from Mechanics (Hong Kong, 1999),, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[12]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[13]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[14]

K. Nishihara, Asymptotic behaviors of solutions to viscous conservation laws via $L^2-$energy method, Adv. Math. (China), 30 (2001), 293-321.   Google Scholar

[15]

T. Yang, H.-J. Zhao and Q.-S. Zhao, Asymptotics of radially symmetric solutions for the exterior problem of multidimensional Burgers equation (in Chinese), Sci. Sin. Math., 51 (2021), 1–16, See also arXiv: 1908.03354. Google Scholar

[16]

H. Yin and H.-J. Zhao, Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equation in the half space,, Kinetic and Ralated Models, 2 (2009), 521-550.  doi: 10.3934/krm.2009.2.521.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[17]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[18]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[19]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (18)
  • HTML views (62)
  • Cited by (0)

Other articles
by authors

[Back to Top]