
-
Previous Article
Martingale solution for stochastic active liquid crystal system
- DCDS Home
- This Issue
-
Next Article
Integral equations on compact CR manifolds
Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $
Research Institute of Mathematics, Seoul National University, GwanAkRo 1, Gwanak-Gu, Seoul, 08826, South Korea |
The celebrated result of Eskin, Margulis and Mozes [
In rank $ 3 $ or $ 4 $, there are exceptional quadratic forms which fail to satisfy the quantitative Oppenheim conjecture. Even in those cases, one can say that two asymptotic limits coincide for almost all quadratic forms([
References:
[1] |
P. Abramenko and K. S. Brown, Buildings. Theory and Applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008.
doi: 10.1007/978-0-387-78835-7. |
[2] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points, J. Mod. Dyn., 12 (2018), 9-16.
doi: 10.3934/jmd.2018002. |
[3] |
P. Bandi, A. Ghosh and J. Han,
A generic effective Oppenheim theorem for systems of forms, J. Number Thoery, 218 (2020), 311-333.
doi: 10.1016/j.jnt.2020.07.002. |
[4] |
Y. Benoist,
Five lectures on lattices in semisimple Lie groups, Géométries à Courbure Négative ou Nulle, Groupes Discrets et Rigidités, Sémin. Congr., Soc. Math. France, Paris, 18 (2009), 117-176.
|
[5] |
A. Borel and G. Prasad,
Values of isotropic quadratic forms at $S$-integral points, Compos. Math., 83 (1992), 347-372.
|
[6] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[7] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel'fand Seminar, Adv. Soviet Math., Part 1, Amer. Math. Soc., Providence, RI, 16 (1993), 91-137.
|
[8] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[9] |
A. Eskin, G. Margulis and S. Mozes,
Quadratic forms of signature $(2, 2)$ and eigenvalue spacings on rectangular $2$-tori, Ann. of Math., 161 (2005), 679-725.
doi: 10.4007/annals.2005.161.679. |
[10] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, preprint, arXiv: 1801.01027. Google Scholar |
[11] |
A. Ghosh and D. Kelmer,
A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-8.
doi: 10.3934/jmd.2018001. |
[12] |
A. Gorodnik,
Oppenheim conjecture for pairs consisting of a linear form and a quadratic form, Trans. Amer. Math. Soc., 356 (2004), 4447-4463.
doi: 10.1090/S0002-9947-04-03473-7. |
[13] |
J. Han, S. Lim and K. Mallahi-Karai,
Asymptotic distribution of values of isotropic quadratic forms at $S$-integral points, J. Mod. Dyn., 11 (2017), 501-550.
doi: 10.3934/jmd.2017020. |
[14] |
D. Kelmer and S. Yu, Values of random polynomials in shrinking targets, preprint, arXiv: 1812.04541. Google Scholar |
[15] |
D. Kleinbock and G. Tomanov,
Flows on $S$-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comment. Math. Helv., 82 (2007), 519-581.
doi: 10.4171/CMH/102. |
[16] |
Y. Lazar,
Values of pairs involving one quadratic form and one linear form at $S$-integral points, J. Number Theory, 181 (2017), 200-217.
doi: 10.1016/j.jnt.2017.06.003. |
[17] |
G. A. Margulis,
Formes quadratriques indéfinies et flots unipotents sur les espaces homogénes, C. R. Acad. Sci. Paris. Sér. I Math., 304 (1987), 249-253.
|
[18] |
H. Oh, Uniform pointwise bounds for matrix coefficients, Duke Math. J., 113 (2002), 133-192. Google Scholar |
[19] |
A. Oppenheim, The Minima of Indefinite Quaternary Quadratic Forms, Thesis (Ph.D.)–The University of Chicago, 1930. |
[20] |
V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied
Mathematics, 139. Academic Press, Inc., Boston, MA, 1994. |
[21] |
M. Ratner,
Raghunathan's conjectures for Cartesian products of real and $p$-adic Lie groups, Duke Math. J., 77 (1995), 275-382.
doi: 10.1215/S0012-7094-95-07710-2. |
[22] |
G. Robertson, Euclidean Buildings, (lecture), "Arithmetic Geometry and Noncommutative Geometry", Masterclass, Utrecht, 2010. Google Scholar |
[23] |
O. Sargent,
Density of values of linear maps on quadratic surfaces, J. Number Theory, 143 (2014), 363-384.
doi: 10.1016/j.jnt.2014.04.020. |
[24] |
O. Sargent,
Equidistribution of values of linear forms on quadratic surfaces, Algebra Number Theory, 8 (2014), 895-932.
doi: 10.2140/ant.2014.8.895. |
[25] |
W. M. Schmidt,
Approximation to algebraic numbers, Enseignement Math., 17 (1971), 187-253.
|
[26] |
J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973. |
[27] |
J.-P. Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. |
[28] |
T. A. Springer, Linear Algebraic Groups, Second edition, Progress in Mathematics, 9, Birkh user Boston, Inc., Boston, MA, 1998.
doi: 10.1007/978-0-8176-4840-4. |
[29] |
G. Tomanov,
Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 26 (2000), 265-297.
doi: 10.2969/aspm/02610265. |
show all references
References:
[1] |
P. Abramenko and K. S. Brown, Buildings. Theory and Applications, Graduate Texts in Mathematics, 248. Springer, New York, 2008.
doi: 10.1007/978-0-387-78835-7. |
[2] |
J. S. Athreya and G. A. Margulis,
Values of random polynomials at integer points, J. Mod. Dyn., 12 (2018), 9-16.
doi: 10.3934/jmd.2018002. |
[3] |
P. Bandi, A. Ghosh and J. Han,
A generic effective Oppenheim theorem for systems of forms, J. Number Thoery, 218 (2020), 311-333.
doi: 10.1016/j.jnt.2020.07.002. |
[4] |
Y. Benoist,
Five lectures on lattices in semisimple Lie groups, Géométries à Courbure Négative ou Nulle, Groupes Discrets et Rigidités, Sémin. Congr., Soc. Math. France, Paris, 18 (2009), 117-176.
|
[5] |
A. Borel and G. Prasad,
Values of isotropic quadratic forms at $S$-integral points, Compos. Math., 83 (1992), 347-372.
|
[6] |
J. Bourgain,
A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math., 215 (2016), 503-512.
doi: 10.1007/s11856-016-1385-7. |
[7] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel'fand Seminar, Adv. Soviet Math., Part 1, Amer. Math. Soc., Providence, RI, 16 (1993), 91-137.
|
[8] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[9] |
A. Eskin, G. Margulis and S. Mozes,
Quadratic forms of signature $(2, 2)$ and eigenvalue spacings on rectangular $2$-tori, Ann. of Math., 161 (2005), 679-725.
doi: 10.4007/annals.2005.161.679. |
[10] |
A. Ghosh, A. Gorodnik and A. Nevo, Optimal density for values of generic polynomial maps, preprint, arXiv: 1801.01027. Google Scholar |
[11] |
A. Ghosh and D. Kelmer,
A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn., 12 (2018), 1-8.
doi: 10.3934/jmd.2018001. |
[12] |
A. Gorodnik,
Oppenheim conjecture for pairs consisting of a linear form and a quadratic form, Trans. Amer. Math. Soc., 356 (2004), 4447-4463.
doi: 10.1090/S0002-9947-04-03473-7. |
[13] |
J. Han, S. Lim and K. Mallahi-Karai,
Asymptotic distribution of values of isotropic quadratic forms at $S$-integral points, J. Mod. Dyn., 11 (2017), 501-550.
doi: 10.3934/jmd.2017020. |
[14] |
D. Kelmer and S. Yu, Values of random polynomials in shrinking targets, preprint, arXiv: 1812.04541. Google Scholar |
[15] |
D. Kleinbock and G. Tomanov,
Flows on $S$-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comment. Math. Helv., 82 (2007), 519-581.
doi: 10.4171/CMH/102. |
[16] |
Y. Lazar,
Values of pairs involving one quadratic form and one linear form at $S$-integral points, J. Number Theory, 181 (2017), 200-217.
doi: 10.1016/j.jnt.2017.06.003. |
[17] |
G. A. Margulis,
Formes quadratriques indéfinies et flots unipotents sur les espaces homogénes, C. R. Acad. Sci. Paris. Sér. I Math., 304 (1987), 249-253.
|
[18] |
H. Oh, Uniform pointwise bounds for matrix coefficients, Duke Math. J., 113 (2002), 133-192. Google Scholar |
[19] |
A. Oppenheim, The Minima of Indefinite Quaternary Quadratic Forms, Thesis (Ph.D.)–The University of Chicago, 1930. |
[20] |
V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied
Mathematics, 139. Academic Press, Inc., Boston, MA, 1994. |
[21] |
M. Ratner,
Raghunathan's conjectures for Cartesian products of real and $p$-adic Lie groups, Duke Math. J., 77 (1995), 275-382.
doi: 10.1215/S0012-7094-95-07710-2. |
[22] |
G. Robertson, Euclidean Buildings, (lecture), "Arithmetic Geometry and Noncommutative Geometry", Masterclass, Utrecht, 2010. Google Scholar |
[23] |
O. Sargent,
Density of values of linear maps on quadratic surfaces, J. Number Theory, 143 (2014), 363-384.
doi: 10.1016/j.jnt.2014.04.020. |
[24] |
O. Sargent,
Equidistribution of values of linear forms on quadratic surfaces, Algebra Number Theory, 8 (2014), 895-932.
doi: 10.2140/ant.2014.8.895. |
[25] |
W. M. Schmidt,
Approximation to algebraic numbers, Enseignement Math., 17 (1971), 187-253.
|
[26] |
J.-P. Serre, A Course in Arithmetic, Graduate Texts in Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973. |
[27] |
J.-P. Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. |
[28] |
T. A. Springer, Linear Algebraic Groups, Second edition, Progress in Mathematics, 9, Birkh user Boston, Inc., Boston, MA, 1998.
doi: 10.1007/978-0-8176-4840-4. |
[29] |
G. Tomanov,
Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 26 (2000), 265-297.
doi: 10.2969/aspm/02610265. |


[1] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[2] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[3] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[4] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[5] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[6] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[7] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[8] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[9] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[10] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[11] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[12] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[13] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[14] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[15] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[16] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[17] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[18] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[19] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[20] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]