• Previous Article
    On the asymptotic properties for stationary solutions to the Navier-Stokes equations
  • DCDS Home
  • This Issue
  • Next Article
    A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity
doi: 10.3934/dcds.2020360

Martingale solution for stochastic active liquid crystal system

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

* Corresponding author: Yixuan Wang

Received  March 2020 Revised  September 2020 Published  October 2020

Fund Project: The first author is supported by the CSC under grant No.201806160015

The global weak martingale solution is built through a four-level approximation scheme to stochastic compressible active liquid crystal system driven by multiplicative noise in a smooth bounded domain in $ \mathbb{R}^{3} $ with large initial data. The coupled structure makes the analysis challenging, and more delicate arguments are required in stochastic case compared to the deterministic one [11].

Citation: Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020360
References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 233. Springer-Verlag, Berlin New York, 1976.  Google Scholar

[2]

M. E. Bogovski$ \rm\check{i} $, Solution of some vector analysis problems connected with operators div and grad, Trudy Seminar SL Sobolev, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 80 (1980), 5-40.   Google Scholar

[3]

W. Borchers and H. Sohr, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J., 19 (1990), 67-87.  doi: 10.14492/hokmj/1381517172.  Google Scholar

[4]

D. Breit and E. Feireisl, Stochastic Navier-Stokes-Fourier equations, Indiana Univ. Math. J., 69 (2020), 911-975.  doi: 10.1512/iumj.2020.69.7895.  Google Scholar

[5]

D. Breit, E. Feireisl and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter Series in Applied and Numerical Mathematics, 3. De Gruyter, Berlin, 2018.  Google Scholar

[6]

D. BreitE. Feireisl and M. Hofmanová, Local strong solutions to the stochastic compressible Navier-Stokes system, Comm. Partial Differential Equations, 43 (2018), 313-345.  doi: 10.1080/03605302.2018.1442476.  Google Scholar

[7]

D. BreitE. FeireislM. Hofmanová and B. Maslowski, Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces, Probab. Theory Related Fields, 174 (2019), 981-1032.  doi: 10.1007/s00440-018-0875-4.  Google Scholar

[8]

D. Breit and M. Hofmanová, Stochastic Navier-Stokes equations for compressible fluids, Idiana Univ. Math. J., 65 (2014), 1183-1250.  doi: 10.1512/iumj.2016.65.5832.  Google Scholar

[9]

Z. Brzeźniak and M. Ondreját, Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253 (2007), 449-481.  doi: 10.1016/j.jfa.2007.03.034.  Google Scholar

[10]

G.-Q. ChenA. MajumdarD. Wang and R. Zhang, Global existence and regularity of solutions for active liquid crystals, J. Differential Equations, 263 (2017), 202-239.  doi: 10.1016/j.jde.2017.02.035.  Google Scholar

[11]

G.-Q. ChenA. MajumdarD. Wang and R. Zhang, Global weak solutions for the compressible active liquid crystal system, SIAM J. Math. Anal., 50 (2018), 3632-3675.  doi: 10.1137/17M1156897.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[13]

N. C. DarntonL. TurnerS. Rojevsk and H. C. Berg, Dynamics of bacterial swarming, Biophys. J., 98 (2010), 2082-2090.  doi: 10.1016/j.bpj.2010.01.053.  Google Scholar

[14]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[15]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[16]

C. R. Doering and J. D. Gibbon. Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511608803.  Google Scholar

[17]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.  Google Scholar

[18]

E. FeireislB. Maslowski and A. Novotný, Compressible fluid flows driven by stochastic forcing, J. Differential Equations, 254 (2013), 1342-1358.  doi: 10.1016/j.jde.2012.10.020.  Google Scholar

[19]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid. Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[20]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Math., Springer, Berlin, 1942 (2008), 51-150.  doi: 10.1007/978-3-540-78493-7_2.  Google Scholar

[21]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[22]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[23]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itôs stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.  Google Scholar

[25]

X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Comm. Math. Phys., 296 (2010), 861-880.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[26]

A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1998), 167-174.  doi: 10.4213/tvp1769.  Google Scholar

[27]

O. Kallenberg, Foundations of Modern Probability in Probabolity and Its Application, Springer-Verlag, New York, 1997.  Google Scholar

[28]

W. Lian and R. Zhang, Global weak solutions to the active hydrodynamics of liquid crystals, J. Differential Equations, 268 (2019), 4194-4221.  doi: 10.1016/j.jde.2019.10.020.  Google Scholar

[29]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models, Oxford University Press, New York, 1996. Google Scholar

[31]

P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[32]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkh?user Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[33]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan. Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.  Google Scholar

[34]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[35]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.  doi: 10.1007/BF01214738.  Google Scholar

[36]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049.  doi: 10.1137/10079224X.  Google Scholar

[37]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67.  doi: 10.1007/s00205-011-0443-x.  Google Scholar

[38]

S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., 1 (2010), 323-345.  doi: 10.1146/annurev-conmatphys-070909-104101.  Google Scholar

[39]

S. A. Smith, Random perturbations of viscous, compressible fluids: Global existence of weak solutions, SIAM J. Math. Anal., 49 (2017), 4521-4578.  doi: 10.1137/15M1015340.  Google Scholar

[40]

T. SanchezD. T. N. ChenS. J. DecampM. Heymann and Z. Dogic, Spontaneous motion in hierarchically assembled active matter, Nature, 491 (2012), 431-434.  doi: 10.1038/nature11591.  Google Scholar

[41]

S. A. Smith and K. Trivisa, The stochastic Navier-Stokes equations for heat-conducting, compressible fluids: global existence of weak solutions, J. Evolution Equations, 18 (2018), 411-465.  doi: 10.1007/s00028-017-0407-1.  Google Scholar

[42]

D. Wang and H. Wang, Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations, Differential Integral Equations, 28 (2015), 1105-1154.   Google Scholar

[43]

D. WangX. Xu and C. Yu, Global weak solution for a coupled compressible Navier-Stokes and $Q$-tensor system, Commun. Math. Sci., 13 (2015), 49-82.  doi: 10.4310/CMS.2015.v13.n1.a3.  Google Scholar

[44]

D. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 233. Springer-Verlag, Berlin New York, 1976.  Google Scholar

[2]

M. E. Bogovski$ \rm\check{i} $, Solution of some vector analysis problems connected with operators div and grad, Trudy Seminar SL Sobolev, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 80 (1980), 5-40.   Google Scholar

[3]

W. Borchers and H. Sohr, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J., 19 (1990), 67-87.  doi: 10.14492/hokmj/1381517172.  Google Scholar

[4]

D. Breit and E. Feireisl, Stochastic Navier-Stokes-Fourier equations, Indiana Univ. Math. J., 69 (2020), 911-975.  doi: 10.1512/iumj.2020.69.7895.  Google Scholar

[5]

D. Breit, E. Feireisl and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter Series in Applied and Numerical Mathematics, 3. De Gruyter, Berlin, 2018.  Google Scholar

[6]

D. BreitE. Feireisl and M. Hofmanová, Local strong solutions to the stochastic compressible Navier-Stokes system, Comm. Partial Differential Equations, 43 (2018), 313-345.  doi: 10.1080/03605302.2018.1442476.  Google Scholar

[7]

D. BreitE. FeireislM. Hofmanová and B. Maslowski, Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces, Probab. Theory Related Fields, 174 (2019), 981-1032.  doi: 10.1007/s00440-018-0875-4.  Google Scholar

[8]

D. Breit and M. Hofmanová, Stochastic Navier-Stokes equations for compressible fluids, Idiana Univ. Math. J., 65 (2014), 1183-1250.  doi: 10.1512/iumj.2016.65.5832.  Google Scholar

[9]

Z. Brzeźniak and M. Ondreját, Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253 (2007), 449-481.  doi: 10.1016/j.jfa.2007.03.034.  Google Scholar

[10]

G.-Q. ChenA. MajumdarD. Wang and R. Zhang, Global existence and regularity of solutions for active liquid crystals, J. Differential Equations, 263 (2017), 202-239.  doi: 10.1016/j.jde.2017.02.035.  Google Scholar

[11]

G.-Q. ChenA. MajumdarD. Wang and R. Zhang, Global weak solutions for the compressible active liquid crystal system, SIAM J. Math. Anal., 50 (2018), 3632-3675.  doi: 10.1137/17M1156897.  Google Scholar

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.  Google Scholar

[13]

N. C. DarntonL. TurnerS. Rojevsk and H. C. Berg, Dynamics of bacterial swarming, Biophys. J., 98 (2010), 2082-2090.  doi: 10.1016/j.bpj.2010.01.053.  Google Scholar

[14]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[15]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[16]

C. R. Doering and J. D. Gibbon. Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511608803.  Google Scholar

[17]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.  Google Scholar

[18]

E. FeireislB. Maslowski and A. Novotný, Compressible fluid flows driven by stochastic forcing, J. Differential Equations, 254 (2013), 1342-1358.  doi: 10.1016/j.jde.2012.10.020.  Google Scholar

[19]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid. Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[20]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Math., Springer, Berlin, 1942 (2008), 51-150.  doi: 10.1007/978-3-540-78493-7_2.  Google Scholar

[21]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[22]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[23]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itôs stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.  doi: 10.1007/BF01203833.  Google Scholar

[24]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data, Arch. Ration. Mech. Anal., 132 (1995), 1-14.  doi: 10.1007/BF00390346.  Google Scholar

[25]

X. Hu and D. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Comm. Math. Phys., 296 (2010), 861-880.  doi: 10.1007/s00220-010-1017-8.  Google Scholar

[26]

A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1998), 167-174.  doi: 10.4213/tvp1769.  Google Scholar

[27]

O. Kallenberg, Foundations of Modern Probability in Probabolity and Its Application, Springer-Verlag, New York, 1997.  Google Scholar

[28]

W. Lian and R. Zhang, Global weak solutions to the active hydrodynamics of liquid crystals, J. Differential Equations, 268 (2019), 4194-4221.  doi: 10.1016/j.jde.2019.10.020.  Google Scholar

[29]

F. LinJ. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[30]

P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models, Oxford University Press, New York, 1996. Google Scholar

[31]

P.-L. Lions, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[32]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkh?user Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[33]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan. Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.  Google Scholar

[34]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[35]

A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464.  doi: 10.1007/BF01214738.  Google Scholar

[36]

M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049.  doi: 10.1137/10079224X.  Google Scholar

[37]

M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), 45-67.  doi: 10.1007/s00205-011-0443-x.  Google Scholar

[38]

S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., 1 (2010), 323-345.  doi: 10.1146/annurev-conmatphys-070909-104101.  Google Scholar

[39]

S. A. Smith, Random perturbations of viscous, compressible fluids: Global existence of weak solutions, SIAM J. Math. Anal., 49 (2017), 4521-4578.  doi: 10.1137/15M1015340.  Google Scholar

[40]

T. SanchezD. T. N. ChenS. J. DecampM. Heymann and Z. Dogic, Spontaneous motion in hierarchically assembled active matter, Nature, 491 (2012), 431-434.  doi: 10.1038/nature11591.  Google Scholar

[41]

S. A. Smith and K. Trivisa, The stochastic Navier-Stokes equations for heat-conducting, compressible fluids: global existence of weak solutions, J. Evolution Equations, 18 (2018), 411-465.  doi: 10.1007/s00028-017-0407-1.  Google Scholar

[42]

D. Wang and H. Wang, Global existence of martingale solutions to the three-dimensional stochastic compressible Navier-Stokes equations, Differential Integral Equations, 28 (2015), 1105-1154.   Google Scholar

[43]

D. WangX. Xu and C. Yu, Global weak solution for a coupled compressible Navier-Stokes and $Q$-tensor system, Commun. Math. Sci., 13 (2015), 49-82.  doi: 10.4310/CMS.2015.v13.n1.a3.  Google Scholar

[44]

D. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.  doi: 10.1007/s00205-011-0488-x.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[6]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[10]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[13]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[14]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[15]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]