
-
Previous Article
On $ \epsilon $-escaping trajectories in homogeneous spaces
- DCDS Home
- This Issue
-
Next Article
Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions
$ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization
1. | LAMFA, UMR 7352 CNRS, University of Picardie, 33 rue Saint Leu, 80039 Amiens, France |
2. | School of Mathematics and Statistics, Central China Normal University 430079 Wuhan, China |
3. | Centre for Mathematical Sciences, Lund University, Box 118, 221 00 LUND, Sweden |
4. | Shanghai Center for Mathematical Sciences, Jiangwan Campus, Fudan University, 200438 Shanghai, China |
Given an integer $ q\ge 2 $ and a real number $ c\in [0,1) $, consider the generalized Thue-Morse sequence $ (t_n^{(q;c)})_{n\ge 0} $ defined by $ t_n^{(q;c)} = e^{2\pi i c s_q(n)} $, where $ s_q(n) $ is the sum of digits of the $ q $-expansion of $ n $. We prove that the $ L^\infty $-norm of the trigonometric polynomials $ \sigma_{N}^{(q;c)} (x) : = \sum_{n = 0}^{N-1} t_n^{(q;c)} e^{2\pi i n x} $, behaves like $ N^{\gamma(q;c)} $, where $ \gamma(q;c) $ is equal to the dynamical maximal value of $ \log_q \left|\frac{\sin q\pi (x+c)}{\sin \pi (x+c)}\right| $ relative to the dynamics $ x \mapsto qx \mod 1 $ and that the maximum value is attained by a $ q $-Sturmian measure. Numerical values of $ \gamma(q;c) $ can be computed.
References:
[1] |
C. Aistleitner, R. Hofer and G. Larcher, On evil Kronecker sequences and lacunary trigonometric products, Ann. Inst. Fourier (Grenoble), 67 (2017), 637–687.
doi: 10.5802/aif.3094. |
[2] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard, Entrance time functions for flat spot maps, Nonlinearity, 23 (2010), 1477–1494.
doi: 10.1088/0951-7715/23/6/011. |
[3] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard,, The flat spot standard family: Variation of the entrance time median, Dyn. Syst., 27 (2012), 29–43.
doi: 10.1080/14689367.2011.625553. |
[4] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard,, Sturmian maximizing measures for the piecewise-linear cosine family, Bull. Braz. Math. Soc. (N.S.), 43 (2012), 285–302.
doi: 10.1007/s00574-012-0013-3. |
[5] |
J. Bochi, Ergodic opitimization of Birkhoff averages and Lyapunov exponents, Proc. Int. Cong. Math. 2018 Rio de Janeiro, 3 (2018), 1825–1846. |
[6] |
T. Bousch, Le poisson n'a pas d'arêtes, Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 489–508.
doi: 10.1016/S0246-0203(00)00132-1. |
[7] |
T. Bousch, La condition de Walters, Ann. Sci. École Norm. Sup. (4), 34 (2001), 287–311.
doi: 10.1016/S0012-9593(00)01062-4. |
[8] |
T. Bousch and O. Jenkinson, Cohomology classes of dynamically non-negative $C^k$ functions, Invent. Math., 148 (2002), 207–217.
doi: 10.1007/s002220100194. |
[9] |
C. Boyd, On the structure of the family of Cherry fields on the torus, Ergodic Theory Dynam. Systems, 5 (1985), 27–46.
doi: 10.1017/S014338570000273X. |
[10] |
S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Cambridge Philos. Soc., 115 (1994), 451–481.
doi: 10.1017/S0305004100072236. |
[11] |
G. Contreras, A. O. Lopes and Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1379–1409.
doi: 10.1017/S0143385701001663. |
[12] |
G. Contreras, Ground states are generically a periodic orbit, Invent. Math., 205 (2016), 383–412.
doi: 10.1007/s00222-015-0638-0. |
[13] |
J. P. Conze and Yves Guivarc'h, Croissance des sommes ergodiques et principe variationnel, Unpublished preprint. Google Scholar |
[14] |
C. Dartyge and G. Tenenbaum, Sommes des chiffres de multiples d'entiers, Ann. Inst. Fourier (Grenoble), 55 (2005), 2423–2474.
doi: 10.5802/aif.2166. |
[15] |
A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory Dynam. Systems, 39 (2019), 1275–1289.
doi: 10.1017/etds.2017.81. |
[16] |
A. Fan, J. Schmeling and W. Shen, Multifractal analysis of generalized Thue-Morse polynomials, In preparation. Google Scholar |
[17] |
A. Fan and J. Konieczny, On uniformity of $q$-multiplicative sequences, Bull. Lond. Math. Soc., 51 (2019), 466–488.
doi: 10.1112/blms.12245. |
[18] |
E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres, Acta Arith., 77 (1996), 339–351.
doi: 10.4064/aa-77-4-339-351. |
[19] |
E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, Math. Ann., 305 (1996), 571–599.
doi: 10.1007/BF01444238. |
[20] |
A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259–265.
doi: 10.4064/aa-13-3-259-265. |
[21] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–233. |
[22] |
O. Jenkinson, Ergodic optimization in dynamical systems, Ergodic Theory Dynam. Systems, 39 (2019), 2593–2618.
doi: 10.1017/etds.2017.142. |
[23] |
O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst., 15 (2006), 197–224.
doi: 10.3934/dcds.2006.15.197. |
[24] |
O. Jenkinson, Optimization and majorization of invariant measures, Electron. Res. Announc. Amer. Math. Soc., 13 (2007), 1–12.
doi: 10.1090/S1079-6762-07-00170-9. |
[25] |
O. Jenkinson, A partial order on $\times2$-invariant measures, Math. Res. Lett., 15 (2008), 893–900.
doi: 10.4310/MRL.2008.v15.n5.a6. |
[26] |
O. Jenkinson, Balanced words and majorization, Discrete Math. Algorithms Appl., 1 (2009), 463–483.
doi: 10.1142/S179383090900035X. |
[27] |
O. Jenkinson, R. D. Mauldin and M. Urbański, Ergodic optimization for noncompact dynamical systems, Dyn. Syst., 22 (2007), 379–388.
doi: 10.1080/14689360701450543. |
[28] |
O. Jenkinson and M. Pollicott, Joint spectral radius, Sturmian measures and the finiteness conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 3062–3100.
doi: 10.1017/etds.2017.18. |
[29] |
O. Jenkinson and J. Steel, Majorization of invariant measures for orientation-reversing maps, Ergodic Theory Dynam. Systems, 30 (2010), 1471–1483.
doi: 10.1017/S0143385709000686. |
[30] |
J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, Ann. Inst. Fourier (Grenoble), 69 (2019), 1897–1913.
doi: 10.5802/aif.3285. |
[31] |
K. Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions: Part two on the translation properties of a simple class of arithmetical functions, Journal of Mathematics and Physics, 6 (1927), 158–163.
doi: 10.1002/sapm192761158. |
[32] |
C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Math., 203 (2009), 107–148.
doi: 10.1007/s11511-009-0040-0. |
[33] |
C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2), 171 (2010), 1591–1646.
doi: 10.4007/annals.2010.171.1591. |
[34] |
C. Mauduit, J. Rivat and A. Sárközy, On the digits of sumsets, Canad. J. Math., 69 (2017), 595–612.
doi: 10.4153/CJM-2016-007-2. |
[35] |
V. A. Pliss, On a conjecture of Smale, Diff. Uravnenija, 8 (1972), 268–282. |
[36] |
M. Queffélec, Questions around the Thue-Morse sequence, Unif. Distrib. Theory, 13 (2018), 1–25.
doi: 10.1515/udt-2018-0001. |
[37] |
J. J. P. Veerman, Irrational rotation numbers, Nonlinearity, 2 (1989), 419–428.
doi: 10.1088/0951-7715/2/3/003. |
[38] |
Y. Zhang, K. Yin and W. Wu, A rigorous computer aided estimation for Gelfond exponent of weighted Thue-Morse sequences, arXiv: 1806.08329v2. Google Scholar |
show all references
References:
[1] |
C. Aistleitner, R. Hofer and G. Larcher, On evil Kronecker sequences and lacunary trigonometric products, Ann. Inst. Fourier (Grenoble), 67 (2017), 637–687.
doi: 10.5802/aif.3094. |
[2] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard, Entrance time functions for flat spot maps, Nonlinearity, 23 (2010), 1477–1494.
doi: 10.1088/0951-7715/23/6/011. |
[3] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard,, The flat spot standard family: Variation of the entrance time median, Dyn. Syst., 27 (2012), 29–43.
doi: 10.1080/14689367.2011.625553. |
[4] |
V. Anagnostopoulou, K. Díaz-Ordaz, O. Jenkinson and C. Richard,, Sturmian maximizing measures for the piecewise-linear cosine family, Bull. Braz. Math. Soc. (N.S.), 43 (2012), 285–302.
doi: 10.1007/s00574-012-0013-3. |
[5] |
J. Bochi, Ergodic opitimization of Birkhoff averages and Lyapunov exponents, Proc. Int. Cong. Math. 2018 Rio de Janeiro, 3 (2018), 1825–1846. |
[6] |
T. Bousch, Le poisson n'a pas d'arêtes, Ann. Inst. H. Poincaré Probab. Statist., 36 (2000), 489–508.
doi: 10.1016/S0246-0203(00)00132-1. |
[7] |
T. Bousch, La condition de Walters, Ann. Sci. École Norm. Sup. (4), 34 (2001), 287–311.
doi: 10.1016/S0012-9593(00)01062-4. |
[8] |
T. Bousch and O. Jenkinson, Cohomology classes of dynamically non-negative $C^k$ functions, Invent. Math., 148 (2002), 207–217.
doi: 10.1007/s002220100194. |
[9] |
C. Boyd, On the structure of the family of Cherry fields on the torus, Ergodic Theory Dynam. Systems, 5 (1985), 27–46.
doi: 10.1017/S014338570000273X. |
[10] |
S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Math. Proc. Cambridge Philos. Soc., 115 (1994), 451–481.
doi: 10.1017/S0305004100072236. |
[11] |
G. Contreras, A. O. Lopes and Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1379–1409.
doi: 10.1017/S0143385701001663. |
[12] |
G. Contreras, Ground states are generically a periodic orbit, Invent. Math., 205 (2016), 383–412.
doi: 10.1007/s00222-015-0638-0. |
[13] |
J. P. Conze and Yves Guivarc'h, Croissance des sommes ergodiques et principe variationnel, Unpublished preprint. Google Scholar |
[14] |
C. Dartyge and G. Tenenbaum, Sommes des chiffres de multiples d'entiers, Ann. Inst. Fourier (Grenoble), 55 (2005), 2423–2474.
doi: 10.5802/aif.2166. |
[15] |
A.-H. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory Dynam. Systems, 39 (2019), 1275–1289.
doi: 10.1017/etds.2017.81. |
[16] |
A. Fan, J. Schmeling and W. Shen, Multifractal analysis of generalized Thue-Morse polynomials, In preparation. Google Scholar |
[17] |
A. Fan and J. Konieczny, On uniformity of $q$-multiplicative sequences, Bull. Lond. Math. Soc., 51 (2019), 466–488.
doi: 10.1112/blms.12245. |
[18] |
E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres, Acta Arith., 77 (1996), 339–351.
doi: 10.4064/aa-77-4-339-351. |
[19] |
E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, Math. Ann., 305 (1996), 571–599.
doi: 10.1007/BF01444238. |
[20] |
A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith., 13 (1967/1968), 259–265.
doi: 10.4064/aa-13-3-259-265. |
[21] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–233. |
[22] |
O. Jenkinson, Ergodic optimization in dynamical systems, Ergodic Theory Dynam. Systems, 39 (2019), 2593–2618.
doi: 10.1017/etds.2017.142. |
[23] |
O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst., 15 (2006), 197–224.
doi: 10.3934/dcds.2006.15.197. |
[24] |
O. Jenkinson, Optimization and majorization of invariant measures, Electron. Res. Announc. Amer. Math. Soc., 13 (2007), 1–12.
doi: 10.1090/S1079-6762-07-00170-9. |
[25] |
O. Jenkinson, A partial order on $\times2$-invariant measures, Math. Res. Lett., 15 (2008), 893–900.
doi: 10.4310/MRL.2008.v15.n5.a6. |
[26] |
O. Jenkinson, Balanced words and majorization, Discrete Math. Algorithms Appl., 1 (2009), 463–483.
doi: 10.1142/S179383090900035X. |
[27] |
O. Jenkinson, R. D. Mauldin and M. Urbański, Ergodic optimization for noncompact dynamical systems, Dyn. Syst., 22 (2007), 379–388.
doi: 10.1080/14689360701450543. |
[28] |
O. Jenkinson and M. Pollicott, Joint spectral radius, Sturmian measures and the finiteness conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 3062–3100.
doi: 10.1017/etds.2017.18. |
[29] |
O. Jenkinson and J. Steel, Majorization of invariant measures for orientation-reversing maps, Ergodic Theory Dynam. Systems, 30 (2010), 1471–1483.
doi: 10.1017/S0143385709000686. |
[30] |
J. Konieczny, Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, Ann. Inst. Fourier (Grenoble), 69 (2019), 1897–1913.
doi: 10.5802/aif.3285. |
[31] |
K. Mahler, The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetical functions: Part two on the translation properties of a simple class of arithmetical functions, Journal of Mathematics and Physics, 6 (1927), 158–163.
doi: 10.1002/sapm192761158. |
[32] |
C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Math., 203 (2009), 107–148.
doi: 10.1007/s11511-009-0040-0. |
[33] |
C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2), 171 (2010), 1591–1646.
doi: 10.4007/annals.2010.171.1591. |
[34] |
C. Mauduit, J. Rivat and A. Sárközy, On the digits of sumsets, Canad. J. Math., 69 (2017), 595–612.
doi: 10.4153/CJM-2016-007-2. |
[35] |
V. A. Pliss, On a conjecture of Smale, Diff. Uravnenija, 8 (1972), 268–282. |
[36] |
M. Queffélec, Questions around the Thue-Morse sequence, Unif. Distrib. Theory, 13 (2018), 1–25.
doi: 10.1515/udt-2018-0001. |
[37] |
J. J. P. Veerman, Irrational rotation numbers, Nonlinearity, 2 (1989), 419–428.
doi: 10.1088/0951-7715/2/3/003. |
[38] |
Y. Zhang, K. Yin and W. Wu, A rigorous computer aided estimation for Gelfond exponent of weighted Thue-Morse sequences, arXiv: 1806.08329v2. Google Scholar |



** | |||||
** We don't compute |
** | |||||
** We don't compute |
Period | |||
Period | |||
[1] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[2] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[3] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[4] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[5] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[6] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[7] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[8] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[11] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[12] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[15] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[16] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[17] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[18] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[19] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[20] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]