
-
Previous Article
Entire and ancient solutions of a supercritical semilinear heat equation
- DCDS Home
- This Issue
-
Next Article
Mean equicontinuity, complexity and applications
Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space
School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan |
The Allen–Cahn–Nagumo equation is a reaction-diffusion equation with a bistable nonlinearity. This equation appears to be simple, however, it includes a rich behavior of solutions. The Allen–Cahn–Nagumo equation features a solution that constantly maintains a certain profile and moves with a constant speed, which is referred to as a traveling wave solution. In this paper, the entire solution of the Allen–Cahn–Nagumo equation is studied in multi-dimensional space. Here an entire solution is meant by the solution defined for all time including negative time, even though it satisfies a parabolic partial differential equation. Especially, this equation admits traveling wave solutions connecting two stable states. It is known that there is an entire solution which behaves as two traveling wave solutions coming from both sides in one dimensional space and annihilating in a finite time and that this one-dimensional entire solution is unique up to the shift. Namely, this entire solution is symmetric with respect to some point. There is a natural question whether entire solutions coming from all directions in the multi-dimensional space are radially symmetric or not. To answer this question, radially asymmetric entire solutions will be constructed by using super-sub solutions.
References:
[1] |
X. Chen,
Generation and propagation of interfaces for reaction-diffusion equations, Journal of Differential Equations, 96 (1992), 116-141.
doi: 10.1016/0022-0396(92)90146-E. |
[2] |
X. Chen and J.-S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, Journal of Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[3] |
Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao,
Entire solutions originating from monotone fronts to the Allen–Cahn equation, Physica D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[4] |
Y.-Y. Chen, H. Ninomiya and R. Taguchi,
Traveling spots on multi-dimensional excitable media, J. Elliptic Parabol. Equ., 1 (2015), 281-305.
doi: 10.1007/BF03377382. |
[5] |
P. Daskalopoulos, R. Hamilton and N. Sesum,
Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom., 84 (2010), 455-464.
doi: 10.4310/jdg/1279114297. |
[6] |
Y. Fukao, Y. Morita and H. Ninomiya,
Some entire solutions of the Allen–Cahn equation, Taiwanese J. Math., 8 (2004), 15-32.
doi: 10.11650/twjm/1500558454. |
[7] |
J.-S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. System, 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[8] |
K. P. Hadeler and F. Rothe,
Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
doi: 10.1007/BF00277154. |
[9] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems, 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[10] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems, 14 (2006), 75-92.
doi: 10.3934/dcds.2006.14.75. |
[11] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[12] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in ${\Bbb R}^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[13] |
J. I. Kanel,
Some problems involving burning-theory equations, Soviet Math. Dokl., 2 (1961), 48-51.
|
[14] |
H. Matano and P. Poláčik,
An entire solution of a bistable parabolic equation on $\Bbb R$ with two colliding pulses, J. Funct. Anal., 272 (2017), 1956-1979.
doi: 10.1016/j.jfa.2016.11.006. |
[15] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[16] |
P. de Mottoni and M. Schatzman,
Development of interfaces in RN, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 207-220.
doi: 10.1017/S0308210500031486. |
[17] |
H. Ninomiya, Entire solutions and traveling wave solutions of the Allen–Cahn–Nagumo equation, Discrete Contin. Dyn. Syst., 39 (2019), 2001-2019.
doi: 10.3934/dcds.2019084. |
[18] |
H. Ninomiya and M. Taniguchi,
Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[19] |
H. Ninomiya and M. Taniguchi,
Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[20] |
P. Poláčik,
Symmetry properties of positive solutions of parabolic equations on $\Bbb R^N$: Ⅱ. Entire solutions, Comm. Partial Differential Equations, 31 (2006), 1615-1638.
doi: 10.1080/03605300600635020. |
[21] |
D. H. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[22] |
M. Taniguchi,
Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[23] |
M. Taniguchi,
The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[24] |
M. Taniguchi,
Multi-dimensional traveling fronts in bistable reaction-diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[25] |
M. Taniguchi,
An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.
doi: 10.1137/130945041. |
[26] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[27] |
H. Yagisita,
Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 13 (2001), 323-353.
doi: 10.1023/A:1016632124792. |
[28] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |
show all references
References:
[1] |
X. Chen,
Generation and propagation of interfaces for reaction-diffusion equations, Journal of Differential Equations, 96 (1992), 116-141.
doi: 10.1016/0022-0396(92)90146-E. |
[2] |
X. Chen and J.-S. Guo,
Existence and uniqueness of entire solutions for a reaction-diffusion equation, Journal of Differential Equations, 212 (2005), 62-84.
doi: 10.1016/j.jde.2004.10.028. |
[3] |
Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao,
Entire solutions originating from monotone fronts to the Allen–Cahn equation, Physica D, 378/379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[4] |
Y.-Y. Chen, H. Ninomiya and R. Taguchi,
Traveling spots on multi-dimensional excitable media, J. Elliptic Parabol. Equ., 1 (2015), 281-305.
doi: 10.1007/BF03377382. |
[5] |
P. Daskalopoulos, R. Hamilton and N. Sesum,
Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom., 84 (2010), 455-464.
doi: 10.4310/jdg/1279114297. |
[6] |
Y. Fukao, Y. Morita and H. Ninomiya,
Some entire solutions of the Allen–Cahn equation, Taiwanese J. Math., 8 (2004), 15-32.
doi: 10.11650/twjm/1500558454. |
[7] |
J.-S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. System, 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[8] |
K. P. Hadeler and F. Rothe,
Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2 (1975), 251-263.
doi: 10.1007/BF00277154. |
[9] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Systems, 13 (2005), 1069-1096.
doi: 10.3934/dcds.2005.13.1069. |
[10] |
F. Hamel, R. Monneau and J.-M. Roquejoffre,
Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Systems, 14 (2006), 75-92.
doi: 10.3934/dcds.2006.14.75. |
[11] |
F. Hamel and N. Nadirashvili,
Entire solutions of the KPP equation, Comm. Pure Appl. Math., 52 (1999), 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W. |
[12] |
F. Hamel and N. Nadirashvili,
Travelling fronts and entire solutions of the Fisher-KPP equation in ${\Bbb R}^N$, Arch. Ration. Mech. Anal., 157 (2001), 91-163.
doi: 10.1007/PL00004238. |
[13] |
J. I. Kanel,
Some problems involving burning-theory equations, Soviet Math. Dokl., 2 (1961), 48-51.
|
[14] |
H. Matano and P. Poláčik,
An entire solution of a bistable parabolic equation on $\Bbb R$ with two colliding pulses, J. Funct. Anal., 272 (2017), 1956-1979.
doi: 10.1016/j.jfa.2016.11.006. |
[15] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[16] |
P. de Mottoni and M. Schatzman,
Development of interfaces in RN, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 207-220.
doi: 10.1017/S0308210500031486. |
[17] |
H. Ninomiya, Entire solutions and traveling wave solutions of the Allen–Cahn–Nagumo equation, Discrete Contin. Dyn. Syst., 39 (2019), 2001-2019.
doi: 10.3934/dcds.2019084. |
[18] |
H. Ninomiya and M. Taniguchi,
Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differential Equations, 213 (2005), 204-233.
doi: 10.1016/j.jde.2004.06.011. |
[19] |
H. Ninomiya and M. Taniguchi,
Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832.
doi: 10.3934/dcds.2006.15.819. |
[20] |
P. Poláčik,
Symmetry properties of positive solutions of parabolic equations on $\Bbb R^N$: Ⅱ. Entire solutions, Comm. Partial Differential Equations, 31 (2006), 1615-1638.
doi: 10.1080/03605300600635020. |
[21] |
D. H. Sattinger,
On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312-355.
doi: 10.1016/0001-8708(76)90098-0. |
[22] |
M. Taniguchi,
Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344.
doi: 10.1137/060661788. |
[23] |
M. Taniguchi,
The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differential Equations, 246 (2009), 2103-2130.
doi: 10.1016/j.jde.2008.06.037. |
[24] |
M. Taniguchi,
Multi-dimensional traveling fronts in bistable reaction-diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046.
doi: 10.3934/dcds.2012.32.1011. |
[25] |
M. Taniguchi,
An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., 47 (2015), 455-476.
doi: 10.1137/130945041. |
[26] |
X. Wang,
On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5. |
[27] |
H. Yagisita,
Nearly spherically symmetric expanding fronts in a bistable reaction-diffusion equation, J. Dynam. Differential Equations, 13 (2001), 323-353.
doi: 10.1023/A:1016632124792. |
[28] |
H. Yagisita,
Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.
doi: 10.2977/prims/1145476150. |

[1] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[2] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[5] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[6] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[7] |
Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021067 |
[8] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[9] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[10] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[11] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[12] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[13] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[14] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[15] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[16] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[17] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[18] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[19] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[20] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]