January  2021, 41(1): 329-357. doi: 10.3934/dcds.2020365

On $ \epsilon $-escaping trajectories in homogeneous spaces

Pennsylvania State University, State College, PA 16802, USA

Received  January 2020 Revised  August 2020 Published  October 2020

Fund Project: F.R.H. was supported by NSF grant DMS-1900778.Z.W. was supported by NSF grant DMS-1753042

Let $ G/\Gamma $ be a finite volume homogeneous space of a semisimple Lie group $ G $, and $ \{\exp(tD)\} $ be a one-parameter $ \operatorname{Ad} $-diagonalizable subgroup inside a simple Lie subgroup $ G_0 $ of $ G $. Denote by $ Z_{\epsilon,D} $ the set of points $ x\in G/\Gamma $ whose $ \{\exp(tD)\} $-trajectory has an escape for at least an $ \epsilon $-portion of mass along some subsequence. We prove that the Hausdorff codimension of $ Z_{\epsilon,D} $ is at least $ c\epsilon $, where $ c $ depends only on $ G $, $ G_0 $ and $ \Gamma $.

Citation: Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365
References:
[1]

Y. Benoist and J.-F. Quint, Random walks on finite volume homogeneous spaces, Invent. Math., 187 (2012), 37-59.  doi: 10.1007/s00222-011-0328-5.  Google Scholar

[2]

Y. Cheung, Hausdorff dimension of the set of singular pairs, Ann. of Math. (2), 173 (2011), 127-167.  doi: 10.4007/annals.2011.173.1.4.  Google Scholar

[3]

Y. Cheung and N. Chevallier, Hausdorff dimension of singular vectors, Duke Math. J., 165 (2016), 2273-2329.  doi: 10.1215/00127094-3477021.  Google Scholar

[4]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., 359 (1985), 55-89.  doi: 10.1515/crll.1985.359.55.  Google Scholar

[5]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel'fand Seminar, Adv. Soviet Math., Amer. Math. Soc., Providence, RI. 16 (1993), 91-137.  Google Scholar

[6]

T. DasL. FishmanD. Simmons and M. Urbański, A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 835-846.  doi: 10.1016/j.crma.2017.07.007.  Google Scholar

[7]

T. Das, F. Fishman, D. Simmons and M. Urbański, A variational principle in the parametric geometry of numbers, arXiv: 1901.06602, 2019. Google Scholar

[8]

A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, Random walks and geometry, Walter de Gruyter, Berlin, (2004), 431-444. doi: 10.1016/s0169-5983(04)00042-5.  Google Scholar

[9]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[10]

H. Garland and M. S. Raghunathan, Fundamental domains for lattices in ($ \mathbb{R}$-)rank $1$ semisimple Lie groups, Ann. of Math. (2), 92 (1970), 279-326.  doi: 10.2307/1970838.  Google Scholar

[11]

S. Kadyrov, Entropy and escape of mass for Hilbert modular spaces, J. Lie Theory, 22 (2012), 701-722.   Google Scholar

[12]

S. KadyrovD. KleinbockE. Lindenstrauss and G. A. Margulis, Singular systems of linear forms and non-escape of mass in the space of lattices, J. Anal. Math., 133 (2017), 253-277.  doi: 10.1007/s11854-017-0033-4.  Google Scholar

[13]

O. Khalil, Bounded and divergent trajectories and expanding curves on homogeneous spaces, Trans. Amer. Math. Soc., 373 (2020), 7473-7525.  doi: 10.1090/tran/8161.  Google Scholar

[14]

D. Kleinbock, An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc., 360 (2008), 6497-6523.  doi: 10.1090/S0002-9947-08-04592-3.  Google Scholar

[15]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaǐ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 171 (1996), 141-172. doi: 10.1090/trans2/171/11.  Google Scholar

[16]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[17]

F. M. Malyšhev, Decompositions of nilpotent Lie algebras, Mat. Zametki, 23 (1978), 27-30.   Google Scholar

[18]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-51445-6.  Google Scholar

show all references

References:
[1]

Y. Benoist and J.-F. Quint, Random walks on finite volume homogeneous spaces, Invent. Math., 187 (2012), 37-59.  doi: 10.1007/s00222-011-0328-5.  Google Scholar

[2]

Y. Cheung, Hausdorff dimension of the set of singular pairs, Ann. of Math. (2), 173 (2011), 127-167.  doi: 10.4007/annals.2011.173.1.4.  Google Scholar

[3]

Y. Cheung and N. Chevallier, Hausdorff dimension of singular vectors, Duke Math. J., 165 (2016), 2273-2329.  doi: 10.1215/00127094-3477021.  Google Scholar

[4]

S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math., 359 (1985), 55-89.  doi: 10.1515/crll.1985.359.55.  Google Scholar

[5]

S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel'fand Seminar, Adv. Soviet Math., Amer. Math. Soc., Providence, RI. 16 (1993), 91-137.  Google Scholar

[6]

T. DasL. FishmanD. Simmons and M. Urbański, A variational principle in the parametric geometry of numbers, with applications to metric Diophantine approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 835-846.  doi: 10.1016/j.crma.2017.07.007.  Google Scholar

[7]

T. Das, F. Fishman, D. Simmons and M. Urbański, A variational principle in the parametric geometry of numbers, arXiv: 1901.06602, 2019. Google Scholar

[8]

A. Eskin and G. Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, Random walks and geometry, Walter de Gruyter, Berlin, (2004), 431-444. doi: 10.1016/s0169-5983(04)00042-5.  Google Scholar

[9]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math. (2), 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[10]

H. Garland and M. S. Raghunathan, Fundamental domains for lattices in ($ \mathbb{R}$-)rank $1$ semisimple Lie groups, Ann. of Math. (2), 92 (1970), 279-326.  doi: 10.2307/1970838.  Google Scholar

[11]

S. Kadyrov, Entropy and escape of mass for Hilbert modular spaces, J. Lie Theory, 22 (2012), 701-722.   Google Scholar

[12]

S. KadyrovD. KleinbockE. Lindenstrauss and G. A. Margulis, Singular systems of linear forms and non-escape of mass in the space of lattices, J. Anal. Math., 133 (2017), 253-277.  doi: 10.1007/s11854-017-0033-4.  Google Scholar

[13]

O. Khalil, Bounded and divergent trajectories and expanding curves on homogeneous spaces, Trans. Amer. Math. Soc., 373 (2020), 7473-7525.  doi: 10.1090/tran/8161.  Google Scholar

[14]

D. Kleinbock, An extension of quantitative nondivergence and applications to Diophantine exponents, Trans. Amer. Math. Soc., 360 (2008), 6497-6523.  doi: 10.1090/S0002-9947-08-04592-3.  Google Scholar

[15]

D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaǐ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, Amer. Math. Soc., Providence, RI, 171 (1996), 141-172. doi: 10.1090/trans2/171/11.  Google Scholar

[16]

D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2), 148 (1998), 339-360.  doi: 10.2307/120997.  Google Scholar

[17]

F. M. Malyšhev, Decompositions of nilpotent Lie algebras, Mat. Zametki, 23 (1978), 27-30.   Google Scholar

[18]

G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 17, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-51445-6.  Google Scholar

[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[3]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[4]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[5]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[6]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[7]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[8]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[9]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[10]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[11]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[14]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[16]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[19]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[20]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (56)
  • HTML views (84)
  • Cited by (0)

Other articles
by authors

[Back to Top]