doi: 10.3934/dcds.2020366

On the asymptotic properties for stationary solutions to the Navier-Stokes equations

Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, CO 80523-1874, USA

* Corresponding author: Oleg Imanuvilov

Received  August 2019 Revised  July 2020 Published  November 2020

Fund Project: The author is supported by NSF grant DMS 1312900

In this paper we study solutions of the stationary Navier-Stokes system, and investigate the minimal decay rate for a nontrivial velocity field at infinity in outside of an obstacle. We prove that in an exterior domain if a solution $ v $ and its derivatives decay like $ O(|x|^{-k}) $ for sufficiently large $ k $, depending on the velocity field, as $ |x|\to \infty $, then $ v $ is zero on that exterior domain. Constructive estimate for $ k $ is given. In the case where velocity field is only bounded at infinity, we show that the infimum of $ L^2 $ norm of a velocity field on a unit ball located at distance $ t $ from an origin is bounded from below as $ Ce^{-\beta t^\frac 43\ln(t)}. $ The proof of these results are based on the Carleman type estimates, and also the Kelvin transform.

Citation: Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020366
References:
[1]

J. Bourgain and C. E. Kenig, On localization in the Andersen-Bernoulli model in higher dimensions, Invent. Math., 161, (2005), 389–426. doi: 10.1007/s00222-004-0435-7.  Google Scholar

[2]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math., 80 (1958), 16–36. doi: 10.2307/2372819.  Google Scholar

[3]

T. Carleman, Sur ur problème d'unicité pur les systémes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 9 pp.  Google Scholar

[4]

R. H. Dyer and D. E. Edmunds, Asymptotic behavior of solutions of the stationary Navier-Stokes equations, J. London Math. Soc., 44 (1969), 340-346.  doi: 10.1112/jlms/s1-44.1.340.  Google Scholar

[5]

R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121–153. Google Scholar

[6]

X. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications, A unified approach, Springer, 2019. doi: 10.1007/978-3-030-29530-1.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-differential Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Fourier Integral Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[9]

L. Hörmander, Linear Partial Differential Operators, Spring-Verlag, Berlin, 1963.  Google Scholar

[10]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[11]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273–1290. doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[12]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, Indiana Univ. Math. J., 60 (2011), 2093–2106. doi: 10.1512/iumj.2011.60.4490.  Google Scholar

[13]

C.-L. Lin and J.-N. Wang, Quantitative uniqueness estimates for the general second order elliptic equations, J. Func. Anal., 266 (2014), 5108–5125. doi: 10.1016/j.jfa.2014.02.016.  Google Scholar

[14]

R. Regbaoui, Strong unique continuation for Stokes equation, Comm. Partial Differential Equations, 24 (1999), 1891–1902. doi: 10.1080/03605309908821486.  Google Scholar

show all references

References:
[1]

J. Bourgain and C. E. Kenig, On localization in the Andersen-Bernoulli model in higher dimensions, Invent. Math., 161, (2005), 389–426. doi: 10.1007/s00222-004-0435-7.  Google Scholar

[2]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math., 80 (1958), 16–36. doi: 10.2307/2372819.  Google Scholar

[3]

T. Carleman, Sur ur problème d'unicité pur les systémes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 9 pp.  Google Scholar

[4]

R. H. Dyer and D. E. Edmunds, Asymptotic behavior of solutions of the stationary Navier-Stokes equations, J. London Math. Soc., 44 (1969), 340-346.  doi: 10.1112/jlms/s1-44.1.340.  Google Scholar

[5]

R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121–153. Google Scholar

[6]

X. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications, A unified approach, Springer, 2019. doi: 10.1007/978-3-030-29530-1.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-differential Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Fourier Integral Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[9]

L. Hörmander, Linear Partial Differential Operators, Spring-Verlag, Berlin, 1963.  Google Scholar

[10]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[11]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273–1290. doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[12]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, Indiana Univ. Math. J., 60 (2011), 2093–2106. doi: 10.1512/iumj.2011.60.4490.  Google Scholar

[13]

C.-L. Lin and J.-N. Wang, Quantitative uniqueness estimates for the general second order elliptic equations, J. Func. Anal., 266 (2014), 5108–5125. doi: 10.1016/j.jfa.2014.02.016.  Google Scholar

[14]

R. Regbaoui, Strong unique continuation for Stokes equation, Comm. Partial Differential Equations, 24 (1999), 1891–1902. doi: 10.1080/03605309908821486.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[9]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 1.338

Article outline

[Back to Top]