It has been proved in [
$ \begin{equation} \lambda u_\lambda+H(x,d_x u_\lambda) = c(H)\qquad\hbox{in $M$}, \;\;\;\;\;\;\;\;\;(*)\end{equation} $
uniformly converges, for
$ H(x,d_x u) = c(H)\qquad\hbox{in $M$}, $
where
Citation: |
[1] |
G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994.
![]() ![]() |
[2] |
P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.
doi: 10.1016/j.ansens.2007.01.004.![]() ![]() ![]() |
[3] |
P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.
doi: 10.4310/MRL.2007.v14.n3.a14.![]() ![]() ![]() |
[4] |
P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.
doi: 10.1016/0362-546X(89)90056-4.![]() ![]() ![]() |
[5] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983.
![]() ![]() |
[6] |
G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.
doi: 10.1007/s000390050074.![]() ![]() ![]() |
[7] |
A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.
doi: 10.1007/s00222-016-0648-6.![]() ![]() ![]() |
[8] |
A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008.
![]() |
[9] |
A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.
doi: 10.1007/s00222-003-0323-6.![]() ![]() ![]() |
[10] |
N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.
doi: 10.2307/1968511.![]() ![]() ![]() |
[11] |
S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.
doi: 10.1007/s00220-017-2900-3.![]() ![]() ![]() |
[12] |
A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703.
doi: 10.1007/978-1-4614-1806-1_42.![]() ![]() ![]() |
[13] |
K. Wang, L. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.
doi: 10.1088/1361-6544/30/2/492.![]() ![]() ![]() |
[14] |
K. Wang, L. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.
doi: 10.1007/s00220-019-03362-2.![]() ![]() ![]() |
[15] |
K. Wang, L. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.
doi: 10.1016/j.matpur.2018.08.011.![]() ![]() ![]() |