\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the vanishing discount problem from the negative direction

Abstract Full Text(HTML) Related Papers Cited by
  • It has been proved in [7] that the unique viscosity solution of

    $ \begin{equation} \lambda u_\lambda+H(x,d_x u_\lambda) = c(H)\qquad\hbox{in $M$}, \;\;\;\;\;\;\;\;\;(*)\end{equation} $

    uniformly converges, for $ \lambda\rightarrow 0^+ $, to a specific solution $ u_0 $ of the critical equation

    $ H(x,d_x u) = c(H)\qquad\hbox{in $M$}, $

    where $ M $ is a closed and connected Riemannian manifold and $ c(H) $ is the critical value. In this note, we consider the same problem for $ \lambda\rightarrow 0^- $. In this case, viscosity solutions of equation (*) are not unique, in general, so we focus on the asymptotics of the minimal solution $ u_\lambda^- $ of (*). Under the assumption that constant functions are subsolutions of the critical equation, we prove that the $ u_\lambda^- $ also converges to $ u_0 $ as $ \lambda\rightarrow 0^- $. Furthermore, we exhibit an example of $ H $ for which equation (*) admits a unique solution for $ \lambda<0 $ as well.

    Mathematics Subject Classification: Primary: 37J51, 35F21; Secondary: 35D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994.
    [2] P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.  doi: 10.1016/j.ansens.2007.01.004.
    [3] P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.  doi: 10.4310/MRL.2007.v14.n3.a14.
    [4] P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.  doi: 10.1016/0362-546X(89)90056-4.
    [5] F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983.
    [6] G. ContrerasR. IturriagaG. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.  doi: 10.1007/s000390050074.
    [7] A. DaviniA. FathiR. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.
    [8] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008.
    [9] A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.
    [10] N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.  doi: 10.2307/1968511.
    [11] S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.  doi: 10.1007/s00220-017-2900-3.
    [12] A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703. doi: 10.1007/978-1-4614-1806-1_42.
    [13] K. WangL. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.  doi: 10.1088/1361-6544/30/2/492.
    [14] K. WangL. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.  doi: 10.1007/s00220-019-03362-2.
    [15] K. WangL. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.  doi: 10.1016/j.matpur.2018.08.011.
  • 加载中
SHARE

Article Metrics

HTML views(489) PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return