    doi: 10.3934/dcds.2020368

## On the vanishing discount problem from the negative direction

 1 Dip. di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy 2 Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received  January 2020 Revised  July 2020 Published  November 2020

It has been proved in  that the unique viscosity solution of
 $\begin{equation} \lambda u_\lambda+H(x,d_x u_\lambda) = c(H)\qquad\hbox{in$M$}, \;\;\;\;\;\;\;\;\;(*)\end{equation}$
uniformly converges, for
 $\lambda\rightarrow 0^+$
, to a specific solution
 $u_0$
of the critical equation
 $H(x,d_x u) = c(H)\qquad\hbox{in$M$},$
where
 $M$
is a closed and connected Riemannian manifold and
 $c(H)$
is the critical value. In this note, we consider the same problem for
 $\lambda\rightarrow 0^-$
. In this case, viscosity solutions of equation (*) are not unique, in general, so we focus on the asymptotics of the minimal solution
 $u_\lambda^-$
of (*). Under the assumption that constant functions are subsolutions of the critical equation, we prove that the
 $u_\lambda^-$
also converges to
 $u_0$
as
 $\lambda\rightarrow 0^-$
. Furthermore, we exhibit an example of
 $H$
for which equation (*) admits a unique solution for
 $\lambda<0$
as well.
Citation: Andrea Davini, Lin Wang. On the vanishing discount problem from the negative direction. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020368
##### References:
  G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994. Google Scholar  P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar  P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar  P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.  doi: 10.1016/0362-546X(89)90056-4.  Google Scholar  F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. Google Scholar  G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.  doi: 10.1007/s000390050074.  Google Scholar  A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar  A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008. Google Scholar  A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar  N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.  doi: 10.2307/1968511.  Google Scholar  S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.  doi: 10.1007/s00220-017-2900-3.  Google Scholar  A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703. doi: 10.1007/978-1-4614-1806-1_42.  Google Scholar  K. Wang, L. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.  doi: 10.1088/1361-6544/30/2/492.  Google Scholar  K. Wang, L. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.  doi: 10.1007/s00220-019-03362-2.  Google Scholar  K. Wang, L. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.  doi: 10.1016/j.matpur.2018.08.011.  Google Scholar

show all references

##### References:
  G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994. Google Scholar  P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar  P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar  P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.  doi: 10.1016/0362-546X(89)90056-4.  Google Scholar  F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983. Google Scholar  G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.  doi: 10.1007/s000390050074.  Google Scholar  A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar  A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008. Google Scholar  A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar  N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.  doi: 10.2307/1968511.  Google Scholar  S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.  doi: 10.1007/s00220-017-2900-3.  Google Scholar  A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703. doi: 10.1007/978-1-4614-1806-1_42.  Google Scholar  K. Wang, L. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.  doi: 10.1088/1361-6544/30/2/492.  Google Scholar  K. Wang, L. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.  doi: 10.1007/s00220-019-03362-2.  Google Scholar  K. Wang, L. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.  doi: 10.1016/j.matpur.2018.08.011.  Google Scholar
  Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380  Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272  Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137  Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320  Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318  Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456  Mathew Gluck. Classification of solutions to a system of $n^{\rm th}$ order equations on $\mathbb R^n$. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246  Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240  Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375  Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385  Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446  Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046  Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452  Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018  Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072  Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048  Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Article outline