doi: 10.3934/dcds.2020369

Genetics of iterative roots for PM functions

1. 

Department of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. 

Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  February 2020 Revised  August 2020 Published  November 2020

Fund Project: This research was supported by NSFC # 11831012 and # 11821001

It is known that the time-one mapping of a flow defines a discrete dynamical system with the same dynamical behaviors as the flow, but conversely one wants to know whether a flow embedded by a homeomorphism preserves the dynamical behaviors of the homeomorphism. In this paper we consider iterative roots, a weak version of embedded flows, for the preservation. We refer an iterative root to be genetic if it is topologically conjugate to its parent function. We prove that none of PM functions with height being $ >1 $ has a genetic root and none of iterative roots of height being $ >1 $ is genetic even if the height of its parent function is equal to 1. This shows that most functions do not have a genetic iterative root. Further, we obtain a necessary and sufficient conditions under which a PM function $ f $ has a genetic iterative root in the case that $ f $ and the iterative root are both of height 1.

Citation: Liu Liu, Weinian Zhang. Genetics of iterative roots for PM functions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020369
References:
[1]

Ch. Babbage, Essay towards the calculus of functions, Philosoph. Transact., 105 (1815), 389-424.   Google Scholar

[2]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[3]

A. BlokhE. CovenM. Misiurewicz and Z. Nitecki, Roots of continuous piecewise monotone maps of an interval, Acta Math. Univ. Comenian.(N.S.), 60 (1991), 3-10.   Google Scholar

[4]

M. K. Fort, Jr. The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc., 6 (1955), 960–967. doi: 10.1090/S0002-9939-1955-0080911-2.  Google Scholar

[5]

N. Iannella and L. Kindermann, Finding iterative roots with a spiking neural network, Inform. Process. Lett., 95 (2005), 545-551.  doi: 10.1016/j.ipl.2005.05.022.  Google Scholar

[6]

S. Karlin and J. McGregor, Embeddablility of discrete time simple branching processes into continous time branching processes, Trans. Amer. Math. Soc., 132 (1968), 115-136.  doi: 10.1090/S0002-9947-1968-0222966-1.  Google Scholar

[7]

L. Kindermann, Computing iterative roots with neural networks, Proc. Fifth Conf. Neural Info. Processing, 2 (1998), 713-715.   Google Scholar

[8]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.  Google Scholar

[9] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[10]

L. LiD. Yang and W. Zhang, A note on iterative roots of PM functions, J. Math. Anal. Appl., 341 (2008), 1482-1486.  doi: 10.1016/j.jmaa.2007.11.006.  Google Scholar

[11]

L. Li and W. Zhang, Conjugacy between piecewise monotonic functions and their iterative roots, Sci. China Math., 59 (2016), 367-378.  doi: 10.1007/s11425-015-5065-6.  Google Scholar

[12]

L. Liu and W. Zhang, Non-monotonic iterative roots extended from characteristic interval, J. Math. Anal. Appl., 378 (2011), 359-373.  doi: 10.1016/j.jmaa.2011.01.037.  Google Scholar

[13]

L. LiuW. JarczykL. Li and W. Zhang, Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 75 (2012), 286-303.  doi: 10.1016/j.na.2011.08.033.  Google Scholar

[14]

G. Targoński, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981.  Google Scholar

[15]

M. C. Zdun and W. Zhang, Koenigs embedding flow problem with global $C^1$ smoothness, J. Math. Anal. Appl., 374 (2011), 633-643.  doi: 10.1016/j.jmaa.2010.08.075.  Google Scholar

[16]

J. Zhang and L. Yang, Iterative roots of a piecewise monotone continuous self-mapping, Acta. Math. Sinica, 26 (1983), 398-412.   Google Scholar

[17]

J. ZhangL. Yang and W. Zhang, Some advances on functional equations, Adv. Math. Chin., 24 (1995), 385-405.   Google Scholar

[18]

W. Zhang, A generic property of globally smooth iterative roots, Sci. China Ser. A, 38 (1995), 267-272.   Google Scholar

[19]

W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128.  doi: 10.4064/ap-65-2-119-128.  Google Scholar

show all references

References:
[1]

Ch. Babbage, Essay towards the calculus of functions, Philosoph. Transact., 105 (1815), 389-424.   Google Scholar

[2]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[3]

A. BlokhE. CovenM. Misiurewicz and Z. Nitecki, Roots of continuous piecewise monotone maps of an interval, Acta Math. Univ. Comenian.(N.S.), 60 (1991), 3-10.   Google Scholar

[4]

M. K. Fort, Jr. The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc., 6 (1955), 960–967. doi: 10.1090/S0002-9939-1955-0080911-2.  Google Scholar

[5]

N. Iannella and L. Kindermann, Finding iterative roots with a spiking neural network, Inform. Process. Lett., 95 (2005), 545-551.  doi: 10.1016/j.ipl.2005.05.022.  Google Scholar

[6]

S. Karlin and J. McGregor, Embeddablility of discrete time simple branching processes into continous time branching processes, Trans. Amer. Math. Soc., 132 (1968), 115-136.  doi: 10.1090/S0002-9947-1968-0222966-1.  Google Scholar

[7]

L. Kindermann, Computing iterative roots with neural networks, Proc. Fifth Conf. Neural Info. Processing, 2 (1998), 713-715.   Google Scholar

[8]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.  Google Scholar

[9] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[10]

L. LiD. Yang and W. Zhang, A note on iterative roots of PM functions, J. Math. Anal. Appl., 341 (2008), 1482-1486.  doi: 10.1016/j.jmaa.2007.11.006.  Google Scholar

[11]

L. Li and W. Zhang, Conjugacy between piecewise monotonic functions and their iterative roots, Sci. China Math., 59 (2016), 367-378.  doi: 10.1007/s11425-015-5065-6.  Google Scholar

[12]

L. Liu and W. Zhang, Non-monotonic iterative roots extended from characteristic interval, J. Math. Anal. Appl., 378 (2011), 359-373.  doi: 10.1016/j.jmaa.2011.01.037.  Google Scholar

[13]

L. LiuW. JarczykL. Li and W. Zhang, Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 75 (2012), 286-303.  doi: 10.1016/j.na.2011.08.033.  Google Scholar

[14]

G. Targoński, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981.  Google Scholar

[15]

M. C. Zdun and W. Zhang, Koenigs embedding flow problem with global $C^1$ smoothness, J. Math. Anal. Appl., 374 (2011), 633-643.  doi: 10.1016/j.jmaa.2010.08.075.  Google Scholar

[16]

J. Zhang and L. Yang, Iterative roots of a piecewise monotone continuous self-mapping, Acta. Math. Sinica, 26 (1983), 398-412.   Google Scholar

[17]

J. ZhangL. Yang and W. Zhang, Some advances on functional equations, Adv. Math. Chin., 24 (1995), 385-405.   Google Scholar

[18]

W. Zhang, A generic property of globally smooth iterative roots, Sci. China Ser. A, 38 (1995), 267-272.   Google Scholar

[19]

W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128.  doi: 10.4064/ap-65-2-119-128.  Google Scholar

[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (9)
  • HTML views (50)
  • Cited by (0)

Other articles
by authors

[Back to Top]