May  2021, 41(5): 2391-2409. doi: 10.3934/dcds.2020369

Genetics of iterative roots for PM functions

1. 

Department of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. 

Yangtze Center of Mathematics and Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Weinian Zhang

Received  February 2020 Revised  August 2020 Published  November 2020

Fund Project: This research was supported by NSFC # 11831012 and # 11821001

It is known that the time-one mapping of a flow defines a discrete dynamical system with the same dynamical behaviors as the flow, but conversely one wants to know whether a flow embedded by a homeomorphism preserves the dynamical behaviors of the homeomorphism. In this paper we consider iterative roots, a weak version of embedded flows, for the preservation. We refer an iterative root to be genetic if it is topologically conjugate to its parent function. We prove that none of PM functions with height being $ >1 $ has a genetic root and none of iterative roots of height being $ >1 $ is genetic even if the height of its parent function is equal to 1. This shows that most functions do not have a genetic iterative root. Further, we obtain a necessary and sufficient conditions under which a PM function $ f $ has a genetic iterative root in the case that $ f $ and the iterative root are both of height 1.

Citation: Liu Liu, Weinian Zhang. Genetics of iterative roots for PM functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (5) : 2391-2409. doi: 10.3934/dcds.2020369
References:
[1]

Ch. Babbage, Essay towards the calculus of functions, Philosoph. Transact., 105 (1815), 389-424.   Google Scholar

[2]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[3]

A. BlokhE. CovenM. Misiurewicz and Z. Nitecki, Roots of continuous piecewise monotone maps of an interval, Acta Math. Univ. Comenian.(N.S.), 60 (1991), 3-10.   Google Scholar

[4]

M. K. Fort, Jr. The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc., 6 (1955), 960–967. doi: 10.1090/S0002-9939-1955-0080911-2.  Google Scholar

[5]

N. Iannella and L. Kindermann, Finding iterative roots with a spiking neural network, Inform. Process. Lett., 95 (2005), 545-551.  doi: 10.1016/j.ipl.2005.05.022.  Google Scholar

[6]

S. Karlin and J. McGregor, Embeddablility of discrete time simple branching processes into continous time branching processes, Trans. Amer. Math. Soc., 132 (1968), 115-136.  doi: 10.1090/S0002-9947-1968-0222966-1.  Google Scholar

[7]

L. Kindermann, Computing iterative roots with neural networks, Proc. Fifth Conf. Neural Info. Processing, 2 (1998), 713-715.   Google Scholar

[8]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.  Google Scholar

[9] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[10]

L. LiD. Yang and W. Zhang, A note on iterative roots of PM functions, J. Math. Anal. Appl., 341 (2008), 1482-1486.  doi: 10.1016/j.jmaa.2007.11.006.  Google Scholar

[11]

L. Li and W. Zhang, Conjugacy between piecewise monotonic functions and their iterative roots, Sci. China Math., 59 (2016), 367-378.  doi: 10.1007/s11425-015-5065-6.  Google Scholar

[12]

L. Liu and W. Zhang, Non-monotonic iterative roots extended from characteristic interval, J. Math. Anal. Appl., 378 (2011), 359-373.  doi: 10.1016/j.jmaa.2011.01.037.  Google Scholar

[13]

L. LiuW. JarczykL. Li and W. Zhang, Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 75 (2012), 286-303.  doi: 10.1016/j.na.2011.08.033.  Google Scholar

[14]

G. Targoński, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981.  Google Scholar

[15]

M. C. Zdun and W. Zhang, Koenigs embedding flow problem with global $C^1$ smoothness, J. Math. Anal. Appl., 374 (2011), 633-643.  doi: 10.1016/j.jmaa.2010.08.075.  Google Scholar

[16]

J. Zhang and L. Yang, Iterative roots of a piecewise monotone continuous self-mapping, Acta. Math. Sinica, 26 (1983), 398-412.   Google Scholar

[17]

J. ZhangL. Yang and W. Zhang, Some advances on functional equations, Adv. Math. Chin., 24 (1995), 385-405.   Google Scholar

[18]

W. Zhang, A generic property of globally smooth iterative roots, Sci. China Ser. A, 38 (1995), 267-272.   Google Scholar

[19]

W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128.  doi: 10.4064/ap-65-2-119-128.  Google Scholar

show all references

References:
[1]

Ch. Babbage, Essay towards the calculus of functions, Philosoph. Transact., 105 (1815), 389-424.   Google Scholar

[2]

K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math., 61 (2001), 1-48.  doi: 10.1007/s000100050159.  Google Scholar

[3]

A. BlokhE. CovenM. Misiurewicz and Z. Nitecki, Roots of continuous piecewise monotone maps of an interval, Acta Math. Univ. Comenian.(N.S.), 60 (1991), 3-10.   Google Scholar

[4]

M. K. Fort, Jr. The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc., 6 (1955), 960–967. doi: 10.1090/S0002-9939-1955-0080911-2.  Google Scholar

[5]

N. Iannella and L. Kindermann, Finding iterative roots with a spiking neural network, Inform. Process. Lett., 95 (2005), 545-551.  doi: 10.1016/j.ipl.2005.05.022.  Google Scholar

[6]

S. Karlin and J. McGregor, Embeddablility of discrete time simple branching processes into continous time branching processes, Trans. Amer. Math. Soc., 132 (1968), 115-136.  doi: 10.1090/S0002-9947-1968-0222966-1.  Google Scholar

[7]

L. Kindermann, Computing iterative roots with neural networks, Proc. Fifth Conf. Neural Info. Processing, 2 (1998), 713-715.   Google Scholar

[8]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warsaw, 1968.  Google Scholar

[9] M. KuczmaB. Choczewski and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.  doi: 10.1017/CBO9781139086639.  Google Scholar
[10]

L. LiD. Yang and W. Zhang, A note on iterative roots of PM functions, J. Math. Anal. Appl., 341 (2008), 1482-1486.  doi: 10.1016/j.jmaa.2007.11.006.  Google Scholar

[11]

L. Li and W. Zhang, Conjugacy between piecewise monotonic functions and their iterative roots, Sci. China Math., 59 (2016), 367-378.  doi: 10.1007/s11425-015-5065-6.  Google Scholar

[12]

L. Liu and W. Zhang, Non-monotonic iterative roots extended from characteristic interval, J. Math. Anal. Appl., 378 (2011), 359-373.  doi: 10.1016/j.jmaa.2011.01.037.  Google Scholar

[13]

L. LiuW. JarczykL. Li and W. Zhang, Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Anal., 75 (2012), 286-303.  doi: 10.1016/j.na.2011.08.033.  Google Scholar

[14]

G. Targoński, Topics in Iteration Theory, Vandenhoeck and Ruprecht, Göttingen, 1981.  Google Scholar

[15]

M. C. Zdun and W. Zhang, Koenigs embedding flow problem with global $C^1$ smoothness, J. Math. Anal. Appl., 374 (2011), 633-643.  doi: 10.1016/j.jmaa.2010.08.075.  Google Scholar

[16]

J. Zhang and L. Yang, Iterative roots of a piecewise monotone continuous self-mapping, Acta. Math. Sinica, 26 (1983), 398-412.   Google Scholar

[17]

J. ZhangL. Yang and W. Zhang, Some advances on functional equations, Adv. Math. Chin., 24 (1995), 385-405.   Google Scholar

[18]

W. Zhang, A generic property of globally smooth iterative roots, Sci. China Ser. A, 38 (1995), 267-272.   Google Scholar

[19]

W. Zhang, PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 65 (1997), 119-128.  doi: 10.4064/ap-65-2-119-128.  Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[3]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[4]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[5]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[6]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[7]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[8]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[9]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[10]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[11]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

2019 Impact Factor: 1.338

Article outline

[Back to Top]