doi: 10.3934/dcds.2020373

Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via Cozzi 55, 20125 Milano, Italy

Received  May 2020 Revised  September 2020 Published  November 2020

A distributed optimal control problem for a diffuse interface model, which physical context is that of tumour growth dynamics, is addressed. The system we deal with comprises a Cahn–Hilliard equation for the tumour fraction coupled with a reaction-diffusion for a nutrient species surrounding the tumourous cells. The cost functional to be minimised possesses some objective terms and it also penalises long treatments time, which may affect harm to the patients, and big aggregations of tumourous cells. Hence, the optimisation problem leads to the optimal strategy which reduces the time exposure of the patient to the medication and at the same time allows the doctors to achieve suitable clinical goals.

Citation: Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020373
References:
[1]

A. AgostiP. F. AntoniettiP. CiarlettaM. Grasselli and M. Verani, A Cahn–Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626.  doi: 10.1002/mma.4548.  Google Scholar

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[3]

C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim., (2019), 1–49. doi: 10.1007/s00245-019-09562-5.  Google Scholar

[4]

P. ColliG. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423-2442.  doi: 10.3934/dcds.2015.35.2423.  Google Scholar

[5]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Sliding mode control for a phase field system related to tumor growth, Appl. Math. Optim., 79 (2019), 647-670.  doi: 10.1007/s00245-017-9451-z.  Google Scholar

[6]

P. ColliG. GilardiE. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26 (2015), 93-108.  doi: 10.1016/j.nonrwa.2015.05.002.  Google Scholar

[7]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[8]

P. ColliG. GilardiE. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modeling tumor growth, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 37-54.  doi: 10.3934/dcdss.2017002.  Google Scholar

[9]

V. CristiniX. LiJ. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.  doi: 10.1007/s00285-008-0215-x.  Google Scholar

[10] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Leiden, 2010.  doi: 10.1017/CBO9780511781452.  Google Scholar
[11]

M. DaiE. FeireislE. RoccaG. Schimperna and M. E. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), 1639-1658.  doi: 10.1088/1361-6544/aa6063.  Google Scholar

[12]

M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998-6036.  doi: 10.1016/j.jde.2018.10.045.  Google Scholar

[13]

M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 71, 38 pp. doi: 10.1051/cocv/2019059.  Google Scholar

[14]

M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation, Calc. Var. Partial Differential Equations, 58 (2019), no. 4, Paper No. 131, 31 pp. doi: 10.1007/s00526-019-1579-z.  Google Scholar

[15]

S. FrigeriM. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), 215-243.  doi: 10.1017/S0956792514000436.  Google Scholar

[16]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Cham, 22 (2017), 217–254. doi: 10.1007/978-3-319-64489-9_9.  Google Scholar

[17]

S. FrigeriK. F. LamE. Rocca and G. Schimperna, On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials, Comm. Math. Sci., 16 (2018), 821-856.   Google Scholar

[18]

H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, European. J. Appl. Math., 28 (2017), 284-316.  doi: 10.1017/S0956792516000292.  Google Scholar

[19]

H. Garcke and K. F. Lam, Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst., 37 (2017), 4277-4308.  doi: 10.3934/dcds.2017183.  Google Scholar

[20]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318-360.  doi: 10.3934/Math.2016.3.318.  Google Scholar

[21]

H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, in Trends on Applications of Mathematics to Mechanics, E. Rocca, U. Stefanelli, L. Truskinovski, A. Visintin (ed.), Springer INdAM Series, Springer, Cham, 27 (2018), 243–264. doi: 10.1007/978-3-319-75940-1_12.  Google Scholar

[22]

H. GarckeK. F. LamR. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[23]

H. GarckeK. F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), 495-544.  doi: 10.1007/s00245-017-9414-4.  Google Scholar

[24]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[25]

A. Hawkins-DaarudS. PrudhommeK. G. van der Zee and J. T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth, J. Math. Biol., 67 (2013), 1457-1485.  doi: 10.1007/s00285-012-0595-9.  Google Scholar

[26]

A. Hawkins-DaruudK. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Math. Biomed. Engng., 28 (2012), 3-24.  doi: 10.1002/cnm.1467.  Google Scholar

[27]

D. HilhorstJ. KampmannT. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011-1043.  doi: 10.1142/S0218202515500268.  Google Scholar

[28]

J.-L. Lions, Contrôle Optimal de Systèmes Gouverneś par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[29]

A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.  doi: 10.3934/Math.2017.2.479.  Google Scholar

[30]

A. MiranvilleE. Rocca and G. Schimperna, On the long time behavior of a tumor growth model, J. Differential Equations, 267 (2019), 2616-2642.   Google Scholar

[31]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV(eds. C.M. Dafermos and M. Pokorny), Elsevier/North-Holland, (2008), 103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[32]

J. T. OdenA. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517.  doi: 10.1142/S0218202510004313.  Google Scholar

[33]

A. Signori, Vanishing parameter for an optimal control problem modeling tumor growth, Asymptot. Anal., 117 (2020), 43–66. doi: 10.3233/ASY-191546.  Google Scholar

[34]

A. Signori, Optimal treatment for a phase field system of Cahn–Hilliard type modeling tumor growth by asymptotic scheme, Math. Control Relat. Fields, 10 (2020), 305–331. doi: 10.3934/mcrf.2019040.  Google Scholar

[35]

A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach, Evol. Equ. Control Theory, 9 (2020), 193–217. doi: 10.3934/eect.2020003.  Google Scholar

[36]

A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential, Appl. Math. Optim., 82 (2020), 517-549.  doi: 10.1007/s00245-018-9538-1.  Google Scholar

[37]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[38]

J. Sprekels and H. Wu, Optimal distributed control of a Cahn–Hilliard–Darcy system with Mass sources, Appl. Math. Optim., (2019), 1–42. Google Scholar

[39]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math., 112, AMS, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[40]

S. M. WiseJ. S. LowengrubH. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I: Model and numerical method., J. Theor. Biol., 253 (2008), 524-543.  doi: 10.1016/j.jtbi.2008.03.027.  Google Scholar

[41]

X. WuG. J. van Zwieten and K. G. van der Zee, Stabilized second-order splitting schemes for Cahn–Hilliard models with applications to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 180-203.  doi: 10.1002/cnm.2597.  Google Scholar

show all references

References:
[1]

A. AgostiP. F. AntoniettiP. CiarlettaM. Grasselli and M. Verani, A Cahn–Hilliard-type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626.  doi: 10.1002/mma.4548.  Google Scholar

[2]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[3]

C. Cavaterra, E. Rocca and H. Wu, Long-time dynamics and optimal control of a diffuse interface model for tumor growth, Appl. Math. Optim., (2019), 1–49. doi: 10.1007/s00245-019-09562-5.  Google Scholar

[4]

P. ColliG. Gilardi and D. Hilhorst, On a Cahn–Hilliard type phase field system related to tumor growth, Discrete Contin. Dyn. Syst., 35 (2015), 2423-2442.  doi: 10.3934/dcds.2015.35.2423.  Google Scholar

[5]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Sliding mode control for a phase field system related to tumor growth, Appl. Math. Optim., 79 (2019), 647-670.  doi: 10.1007/s00245-017-9451-z.  Google Scholar

[6]

P. ColliG. GilardiE. Rocca and J. Sprekels, Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26 (2015), 93-108.  doi: 10.1016/j.nonrwa.2015.05.002.  Google Scholar

[7]

P. ColliG. GilardiE. Rocca and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), 2518-2546.  doi: 10.1088/1361-6544/aa6e5f.  Google Scholar

[8]

P. ColliG. GilardiE. Rocca and J. Sprekels, Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modeling tumor growth, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 37-54.  doi: 10.3934/dcdss.2017002.  Google Scholar

[9]

V. CristiniX. LiJ. S. Lowengrub and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723-763.  doi: 10.1007/s00285-008-0215-x.  Google Scholar

[10] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, Leiden, 2010.  doi: 10.1017/CBO9780511781452.  Google Scholar
[11]

M. DaiE. FeireislE. RoccaG. Schimperna and M. E. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), 1639-1658.  doi: 10.1088/1361-6544/aa6063.  Google Scholar

[12]

M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998-6036.  doi: 10.1016/j.jde.2018.10.045.  Google Scholar

[13]

M. Ebenbeck and P. Knopf, Optimal control theory and advanced optimality conditions for a diffuse interface model of tumor growth, ESAIM Control Optim. Calc. Var., 26 (2020), Paper No. 71, 38 pp. doi: 10.1051/cocv/2019059.  Google Scholar

[14]

M. Ebenbeck and P. Knopf, Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation, Calc. Var. Partial Differential Equations, 58 (2019), no. 4, Paper No. 131, 31 pp. doi: 10.1007/s00526-019-1579-z.  Google Scholar

[15]

S. FrigeriM. Grasselli and E. Rocca, On a diffuse interface model of tumor growth, European J. Appl. Math., 26 (2015), 215-243.  doi: 10.1017/S0956792514000436.  Google Scholar

[16]

S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels (ed.), Springer INdAM Series, Springer, Cham, 22 (2017), 217–254. doi: 10.1007/978-3-319-64489-9_9.  Google Scholar

[17]

S. FrigeriK. F. LamE. Rocca and G. Schimperna, On a multi-species Cahn–Hilliard–Darcy tumor growth model with singular potentials, Comm. Math. Sci., 16 (2018), 821-856.   Google Scholar

[18]

H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, European. J. Appl. Math., 28 (2017), 284-316.  doi: 10.1017/S0956792516000292.  Google Scholar

[19]

H. Garcke and K. F. Lam, Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst., 37 (2017), 4277-4308.  doi: 10.3934/dcds.2017183.  Google Scholar

[20]

H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318-360.  doi: 10.3934/Math.2016.3.318.  Google Scholar

[21]

H. Garcke and K. F. Lam, On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms, in Trends on Applications of Mathematics to Mechanics, E. Rocca, U. Stefanelli, L. Truskinovski, A. Visintin (ed.), Springer INdAM Series, Springer, Cham, 27 (2018), 243–264. doi: 10.1007/978-3-319-75940-1_12.  Google Scholar

[22]

H. GarckeK. F. LamR. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577.  doi: 10.1142/S0218202518500148.  Google Scholar

[23]

H. GarckeK. F. Lam and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), 495-544.  doi: 10.1007/s00245-017-9414-4.  Google Scholar

[24]

H. GarckeK. F. LamE. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148.  doi: 10.1142/S0218202516500263.  Google Scholar

[25]

A. Hawkins-DaarudS. PrudhommeK. G. van der Zee and J. T. Oden, Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth, J. Math. Biol., 67 (2013), 1457-1485.  doi: 10.1007/s00285-012-0595-9.  Google Scholar

[26]

A. Hawkins-DaruudK. G. van der Zee and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Math. Biomed. Engng., 28 (2012), 3-24.  doi: 10.1002/cnm.1467.  Google Scholar

[27]

D. HilhorstJ. KampmannT. N. Nguyen and K. G. van der Zee, Formal asymptotic limit of a diffuse-interface tumor-growth model, Math. Models Methods Appl. Sci., 25 (2015), 1011-1043.  doi: 10.1142/S0218202515500268.  Google Scholar

[28]

J.-L. Lions, Contrôle Optimal de Systèmes Gouverneś par des Equations aux Dérivées Partielles, Dunod, Paris, 1968.  Google Scholar

[29]

A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.  doi: 10.3934/Math.2017.2.479.  Google Scholar

[30]

A. MiranvilleE. Rocca and G. Schimperna, On the long time behavior of a tumor growth model, J. Differential Equations, 267 (2019), 2616-2642.   Google Scholar

[31]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations: Evolutionary Equations, Vol. IV(eds. C.M. Dafermos and M. Pokorny), Elsevier/North-Holland, (2008), 103–200. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[32]

J. T. OdenA. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517.  doi: 10.1142/S0218202510004313.  Google Scholar

[33]

A. Signori, Vanishing parameter for an optimal control problem modeling tumor growth, Asymptot. Anal., 117 (2020), 43–66. doi: 10.3233/ASY-191546.  Google Scholar

[34]

A. Signori, Optimal treatment for a phase field system of Cahn–Hilliard type modeling tumor growth by asymptotic scheme, Math. Control Relat. Fields, 10 (2020), 305–331. doi: 10.3934/mcrf.2019040.  Google Scholar

[35]

A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach, Evol. Equ. Control Theory, 9 (2020), 193–217. doi: 10.3934/eect.2020003.  Google Scholar

[36]

A. Signori, Optimal distributed control of an extended model of tumor growth with logarithmic potential, Appl. Math. Optim., 82 (2020), 517-549.  doi: 10.1007/s00245-018-9538-1.  Google Scholar

[37]

J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[38]

J. Sprekels and H. Wu, Optimal distributed control of a Cahn–Hilliard–Darcy system with Mass sources, Appl. Math. Optim., (2019), 1–42. Google Scholar

[39]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math., 112, AMS, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[40]

S. M. WiseJ. S. LowengrubH. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I: Model and numerical method., J. Theor. Biol., 253 (2008), 524-543.  doi: 10.1016/j.jtbi.2008.03.027.  Google Scholar

[41]

X. WuG. J. van Zwieten and K. G. van der Zee, Stabilized second-order splitting schemes for Cahn–Hilliard models with applications to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 180-203.  doi: 10.1002/cnm.2597.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[16]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (7)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]