-
Previous Article
Second order estimates for complex Hessian equations on Hermitian manifolds
- DCDS Home
- This Issue
-
Next Article
On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
Comparison theorem for diagonally quadratic BSDEs
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China |
The present work is devoted to study comparison and converse comparison theorems for diagonally quadratic BSDEs. We give sufficient and necessary conditions under which the comparison holds. Sufficient and necessary conditions for non-positive and non-negative solutions are presented.
References:
[1] |
J. M. Bismut,
Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[2] |
P. Briand and Y. Hu,
BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.
doi: 10.1007/s00440-006-0497-0. |
[3] |
P. Briand and Y. Hu,
Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.
doi: 10.1007/s00440-007-0093-y. |
[4] |
R. Buckdahn, M. Quincampoix and A. Răşcanu,
Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.
doi: 10.1007/s004400050260. |
[5] |
C. Frei,
Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.
doi: 10.1016/j.spa.2014.03.004. |
[6] |
C. Frei and G. dos Reis,
A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.
doi: 10.1007/s11579-011-0039-0. |
[7] |
Y. Hu and S. Peng,
On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.
doi: 10.1016/j.crma.2006.05.019. |
[8] |
Y. Hu and S. Tang,
Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.
doi: 10.1007/s00440-009-0202-1. |
[9] |
Y. Hu and S. Tang,
Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.
doi: 10.1016/j.spa.2015.10.011. |
[10] |
G. Jia and N. Zhang,
Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.
doi: 10.1016/j.spa.2014.12.012. |
[11] |
M. Kobylanski,
Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.
doi: 10.1214/aop/1019160253. |
[12] |
J. Ma and S. Yao,
On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.
doi: 10.1080/07362994.2010.482827. |
[13] |
E. Pardoux and S. Peng,
Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6. |
[14] |
Y. Xu,
Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.
doi: 10.1111/mafi.12062. |
show all references
References:
[1] |
J. M. Bismut,
Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[2] |
P. Briand and Y. Hu,
BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.
doi: 10.1007/s00440-006-0497-0. |
[3] |
P. Briand and Y. Hu,
Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.
doi: 10.1007/s00440-007-0093-y. |
[4] |
R. Buckdahn, M. Quincampoix and A. Răşcanu,
Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.
doi: 10.1007/s004400050260. |
[5] |
C. Frei,
Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.
doi: 10.1016/j.spa.2014.03.004. |
[6] |
C. Frei and G. dos Reis,
A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.
doi: 10.1007/s11579-011-0039-0. |
[7] |
Y. Hu and S. Peng,
On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.
doi: 10.1016/j.crma.2006.05.019. |
[8] |
Y. Hu and S. Tang,
Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.
doi: 10.1007/s00440-009-0202-1. |
[9] |
Y. Hu and S. Tang,
Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.
doi: 10.1016/j.spa.2015.10.011. |
[10] |
G. Jia and N. Zhang,
Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.
doi: 10.1016/j.spa.2014.12.012. |
[11] |
M. Kobylanski,
Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.
doi: 10.1214/aop/1019160253. |
[12] |
J. Ma and S. Yao,
On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.
doi: 10.1080/07362994.2010.482827. |
[13] |
E. Pardoux and S. Peng,
Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6. |
[14] |
Y. Xu,
Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.
doi: 10.1111/mafi.12062. |
[1] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[2] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[3] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[4] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[5] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[6] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[7] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[8] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[9] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[10] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[11] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[12] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[13] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[14] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[15] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]