doi: 10.3934/dcds.2020374

Comparison theorem for diagonally quadratic BSDEs

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

Received  May 2019 Revised  September 2020 Published  November 2020

Fund Project: Financial support from the Natural Sciences and Engineering Research Council of Canada, Grant RGPIN- 2017-04054.

The present work is devoted to study comparison and converse comparison theorems for diagonally quadratic BSDEs. We give sufficient and necessary conditions under which the comparison holds. Sufficient and necessary conditions for non-positive and non-negative solutions are presented.

Citation: Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020374
References:
[1]

J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.  doi: 10.1007/s00440-006-0497-0.  Google Scholar

[3]

P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.  doi: 10.1007/s00440-007-0093-y.  Google Scholar

[4]

R. BuckdahnM. Quincampoix and A. Răşcanu, Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.  doi: 10.1007/s004400050260.  Google Scholar

[5]

C. Frei, Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.  doi: 10.1016/j.spa.2014.03.004.  Google Scholar

[6]

C. Frei and G. dos Reis, A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.  doi: 10.1007/s11579-011-0039-0.  Google Scholar

[7]

Y. Hu and S. Peng, On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.  doi: 10.1016/j.crma.2006.05.019.  Google Scholar

[8]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.  doi: 10.1007/s00440-009-0202-1.  Google Scholar

[9]

Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.  doi: 10.1016/j.spa.2015.10.011.  Google Scholar

[10]

G. Jia and N. Zhang, Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.  doi: 10.1016/j.spa.2014.12.012.  Google Scholar

[11]

M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.  doi: 10.1214/aop/1019160253.  Google Scholar

[12]

J. Ma and S. Yao, On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.  doi: 10.1080/07362994.2010.482827.  Google Scholar

[13]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[14]

Y. Xu, Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.  doi: 10.1111/mafi.12062.  Google Scholar

show all references

References:
[1]

J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.  doi: 10.1007/s00440-006-0497-0.  Google Scholar

[3]

P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.  doi: 10.1007/s00440-007-0093-y.  Google Scholar

[4]

R. BuckdahnM. Quincampoix and A. Răşcanu, Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.  doi: 10.1007/s004400050260.  Google Scholar

[5]

C. Frei, Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.  doi: 10.1016/j.spa.2014.03.004.  Google Scholar

[6]

C. Frei and G. dos Reis, A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.  doi: 10.1007/s11579-011-0039-0.  Google Scholar

[7]

Y. Hu and S. Peng, On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.  doi: 10.1016/j.crma.2006.05.019.  Google Scholar

[8]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.  doi: 10.1007/s00440-009-0202-1.  Google Scholar

[9]

Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.  doi: 10.1016/j.spa.2015.10.011.  Google Scholar

[10]

G. Jia and N. Zhang, Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.  doi: 10.1016/j.spa.2014.12.012.  Google Scholar

[11]

M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.  doi: 10.1214/aop/1019160253.  Google Scholar

[12]

J. Ma and S. Yao, On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.  doi: 10.1080/07362994.2010.482827.  Google Scholar

[13]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[14]

Y. Xu, Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.  doi: 10.1111/mafi.12062.  Google Scholar

[1]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[2]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[3]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[4]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[5]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[9]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[10]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[11]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[12]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[13]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[14]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

2019 Impact Factor: 1.338

Article outline

[Back to Top]