doi: 10.3934/dcds.2020374

Comparison theorem for diagonally quadratic BSDEs

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

Received  May 2019 Revised  September 2020 Published  November 2020

Fund Project: Financial support from the Natural Sciences and Engineering Research Council of Canada, Grant RGPIN- 2017-04054.

The present work is devoted to study comparison and converse comparison theorems for diagonally quadratic BSDEs. We give sufficient and necessary conditions under which the comparison holds. Sufficient and necessary conditions for non-positive and non-negative solutions are presented.

Citation: Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020374
References:
[1]

J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.  doi: 10.1007/s00440-006-0497-0.  Google Scholar

[3]

P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.  doi: 10.1007/s00440-007-0093-y.  Google Scholar

[4]

R. BuckdahnM. Quincampoix and A. Răşcanu, Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.  doi: 10.1007/s004400050260.  Google Scholar

[5]

C. Frei, Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.  doi: 10.1016/j.spa.2014.03.004.  Google Scholar

[6]

C. Frei and G. dos Reis, A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.  doi: 10.1007/s11579-011-0039-0.  Google Scholar

[7]

Y. Hu and S. Peng, On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.  doi: 10.1016/j.crma.2006.05.019.  Google Scholar

[8]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.  doi: 10.1007/s00440-009-0202-1.  Google Scholar

[9]

Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.  doi: 10.1016/j.spa.2015.10.011.  Google Scholar

[10]

G. Jia and N. Zhang, Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.  doi: 10.1016/j.spa.2014.12.012.  Google Scholar

[11]

M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.  doi: 10.1214/aop/1019160253.  Google Scholar

[12]

J. Ma and S. Yao, On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.  doi: 10.1080/07362994.2010.482827.  Google Scholar

[13]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[14]

Y. Xu, Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.  doi: 10.1111/mafi.12062.  Google Scholar

show all references

References:
[1]

J. M. Bismut, Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 136 (2006), 604-618.  doi: 10.1007/s00440-006-0497-0.  Google Scholar

[3]

P. Briand and Y. Hu, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields, 141 (2008), 543-567.  doi: 10.1007/s00440-007-0093-y.  Google Scholar

[4]

R. BuckdahnM. Quincampoix and A. Răşcanu, Viability property for a backward stochastic differential equation and applications to partial differential equations, Probab. Theory Related Fields, 116 (2000), 485-504.  doi: 10.1007/s004400050260.  Google Scholar

[5]

C. Frei, Splitting multidimensional BSDEs and finding local equilibria, Stochastic Process. Appl., 124 (2014), 2654-2671.  doi: 10.1016/j.spa.2014.03.004.  Google Scholar

[6]

C. Frei and G. dos Reis, A financial market with interacting investors: Does an equilibrium exist?, Math. Financ. Econ., 4 (2011), 161-182.  doi: 10.1007/s11579-011-0039-0.  Google Scholar

[7]

Y. Hu and S. Peng, On the comparison theorem for multidimensional BSDEs, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 135-140.  doi: 10.1016/j.crma.2006.05.019.  Google Scholar

[8]

Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.  doi: 10.1007/s00440-009-0202-1.  Google Scholar

[9]

Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl., 126 (2016), 1066-1086.  doi: 10.1016/j.spa.2015.10.011.  Google Scholar

[10]

G. Jia and N. Zhang, Quadratic $g$-convexity, $C$-convexity and their relationships, Stochastic Process. Appl., 125 (2015), 2272-2294.  doi: 10.1016/j.spa.2014.12.012.  Google Scholar

[11]

M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28 (2000), 558-602.  doi: 10.1214/aop/1019160253.  Google Scholar

[12]

J. Ma and S. Yao, On quadratic $g$-Evaluations/Expectations and related analysis, Stoch. Anal. Appl., 28 (2010), 711-734.  doi: 10.1080/07362994.2010.482827.  Google Scholar

[13]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, System Control Lett., 14 (1990), 55-61.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[14]

Y. Xu, Multidimensional dynamic risk measure via conditional $g$-expectation, Math. Finance., 26 (2016), 638-673.  doi: 10.1111/mafi.12062.  Google Scholar

[1]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[2]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[3]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

2019 Impact Factor: 1.338

Article outline

[Back to Top]