-
Previous Article
Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative
- DCDS Home
- This Issue
-
Next Article
Comparison theorem for diagonally quadratic BSDEs
Second order estimates for complex Hessian equations on Hermitian manifolds
1. | School of Mathematics, Tianjin University, Tianjin 300354, China |
2. | Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
We derive second order estimates for $ \chi $-plurisubharmonic solutions of complex Hessian equations with right hand side depending on the gradient on compact Hermitian manifolds.
References:
[1] |
S. Y. Cheng and S. T. Yau,
On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math., 33 (1980), 507-544.
doi: 10.1002/cpa.3160330404. |
[2] |
J. C. Chu, L. D. Huang and X. H. Zhu,
The Fu-Yau equation in higher dimensions, Peking Math. J., 2 (2019), 71-97.
doi: 10.1007/s42543-019-00016-z. |
[3] |
J. C. Chu, L. D. Huang and X. H. Zhu,
The Fu-Yau equation on compact astheno-Kähler manifolds, Adv. Math., 346 (2019), 908-945.
doi: 10.1016/j.aim.2019.02.006. |
[4] |
J. C. Chu, L. D. Huang and X. H. Zhu, The 2-nd Hessian type equation on almost Hermitian manifolds, preprint, arXiv: 1707.04072. Google Scholar |
[5] |
J. C. Chu, V. Tosatti and B. Weinkove,
The Monge-Ampère equation for non-integrable almost complex structures, J. Eur. Math. Soc., 21 (2019), 1949-1984.
doi: 10.4171/JEMS/878. |
[6] |
S. Dinew and S. Kołodziej,
Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math., 139 (2017), 403-415.
doi: 10.1353/ajm.2017.0009. |
[7] |
A. Fino, Y. Y. Li, S. Salamon and L. Vezzoni,
The Calabi-Yau equation on 4-manifolds over 2-tori, Trans. Amer. Math. Soc., 365 (2013), 1551-1575.
doi: 10.1090/S0002-9947-2012-05692-3. |
[8] |
J. X. Fu and S. T. Yau,
The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Differential Geom., 78 (2008), 369-428.
doi: 10.4310/jdg/1207834550. |
[9] |
B. Guan and H. M. Jiao,
Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds, Calc. Var. Partial Differential Equations, 54 (2015), 2693-2712.
doi: 10.1007/s00526-015-0880-8. |
[10] |
P. F. Guan, C. Y. Ren and Z. Z. Wang,
Global $C^2$-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math., 68 (2015), 1287-1325.
doi: 10.1002/cpa.21528. |
[11] |
Z. L. Hou, X. N. Ma and D. M. Wu,
A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561.
doi: 10.4310/MRL.2010.v17.n3.a12. |
[12] |
R. Kobayashi,
Kähler-Einstein metric on an open algebraic manifold, Osaka J. Math., 21 (1984), 399-418.
|
[13] |
C. Li and L. M. Shen,
The complex Hessian equations with gradient terms on Hermitian manifolds, J. Differential Equations, 269 (2020), 6293-6310.
doi: 10.1016/j.jde.2020.04.037. |
[14] |
Y. Y. Li,
Some existence results of fully nonlinear elliptic equations of Monge-Ampere type, Comm. Pure Appl. Math., 43 (1990), 233-271.
doi: 10.1002/cpa.3160430204. |
[15] |
D. H. Phong, S. Picard and X. W. Zhang,
A second order estimate for general complex Hessian equations, Anal. PDE, 9 (2016), 1693-1709.
doi: 10.2140/apde.2016.9.1693. |
[16] |
D. H. Phong, S. Picard and X. W. Zhang, Fu-Yau Hessian equations, preprint, arXiv: 1801.09842. Google Scholar |
[17] |
J. Song and B. Weinkove,
On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229.
doi: 10.1002/cpa.20182. |
[18] |
G. Székelyhidi,
Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom., 109 (2018), 337-378.
doi: 10.4310/jdg/1527040875. |
[19] |
G. Tian,
On the existence of solutions of a class of Monge-Ampère equations, Acta Math. Sinica (N.S.), 4 (1988), 250-265.
doi: 10.1007/BF02560581. |
[20] |
G. Tian and S. T. Yau,
Complete Kähler manifolds with zero Ricci curvature. Ⅰ, J. Amer. Math. Soc., 3 (1990), 579-609.
doi: 10.2307/1990928. |
[21] |
G. Tian and S. T. Yau,
Complete Kähler manifolds with zero Ricci curvature. Ⅱ, Invent. Math., 106 (1991), 27-60.
doi: 10.1007/BF01243902. |
[22] |
V. Tosatti and B. Weinkove,
The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.
doi: 10.1090/S0894-0347-2010-00673-X. |
[23] |
V. Tosatti and B. Weinkove, The complex Monge-Ampère equation with a gradient term, preprint, arXiv: 1906.10034. Google Scholar |
[24] |
S. T. Yau,
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Ⅰ, Comm. Pure Appl. Math., 31 (1978), 339-411.
doi: 10.1002/cpa.3160310304. |
[25] |
R. R. Yuan,
On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds, Canad. J. Math., 70 (2018), 943-960.
doi: 10.4153/CJM-2017-015-9. |
[26] |
D. K. Zhang,
Hessian equations on closed Hermitian manifolds, Pacific J. Math., 291 (2017), 485-510.
doi: 10.2140/pjm.2017.291.485. |
show all references
References:
[1] |
S. Y. Cheng and S. T. Yau,
On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math., 33 (1980), 507-544.
doi: 10.1002/cpa.3160330404. |
[2] |
J. C. Chu, L. D. Huang and X. H. Zhu,
The Fu-Yau equation in higher dimensions, Peking Math. J., 2 (2019), 71-97.
doi: 10.1007/s42543-019-00016-z. |
[3] |
J. C. Chu, L. D. Huang and X. H. Zhu,
The Fu-Yau equation on compact astheno-Kähler manifolds, Adv. Math., 346 (2019), 908-945.
doi: 10.1016/j.aim.2019.02.006. |
[4] |
J. C. Chu, L. D. Huang and X. H. Zhu, The 2-nd Hessian type equation on almost Hermitian manifolds, preprint, arXiv: 1707.04072. Google Scholar |
[5] |
J. C. Chu, V. Tosatti and B. Weinkove,
The Monge-Ampère equation for non-integrable almost complex structures, J. Eur. Math. Soc., 21 (2019), 1949-1984.
doi: 10.4171/JEMS/878. |
[6] |
S. Dinew and S. Kołodziej,
Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math., 139 (2017), 403-415.
doi: 10.1353/ajm.2017.0009. |
[7] |
A. Fino, Y. Y. Li, S. Salamon and L. Vezzoni,
The Calabi-Yau equation on 4-manifolds over 2-tori, Trans. Amer. Math. Soc., 365 (2013), 1551-1575.
doi: 10.1090/S0002-9947-2012-05692-3. |
[8] |
J. X. Fu and S. T. Yau,
The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation, J. Differential Geom., 78 (2008), 369-428.
doi: 10.4310/jdg/1207834550. |
[9] |
B. Guan and H. M. Jiao,
Second order estimates for Hessian type fully nonlinear elliptic equations on Riemannian manifolds, Calc. Var. Partial Differential Equations, 54 (2015), 2693-2712.
doi: 10.1007/s00526-015-0880-8. |
[10] |
P. F. Guan, C. Y. Ren and Z. Z. Wang,
Global $C^2$-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math., 68 (2015), 1287-1325.
doi: 10.1002/cpa.21528. |
[11] |
Z. L. Hou, X. N. Ma and D. M. Wu,
A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561.
doi: 10.4310/MRL.2010.v17.n3.a12. |
[12] |
R. Kobayashi,
Kähler-Einstein metric on an open algebraic manifold, Osaka J. Math., 21 (1984), 399-418.
|
[13] |
C. Li and L. M. Shen,
The complex Hessian equations with gradient terms on Hermitian manifolds, J. Differential Equations, 269 (2020), 6293-6310.
doi: 10.1016/j.jde.2020.04.037. |
[14] |
Y. Y. Li,
Some existence results of fully nonlinear elliptic equations of Monge-Ampere type, Comm. Pure Appl. Math., 43 (1990), 233-271.
doi: 10.1002/cpa.3160430204. |
[15] |
D. H. Phong, S. Picard and X. W. Zhang,
A second order estimate for general complex Hessian equations, Anal. PDE, 9 (2016), 1693-1709.
doi: 10.2140/apde.2016.9.1693. |
[16] |
D. H. Phong, S. Picard and X. W. Zhang, Fu-Yau Hessian equations, preprint, arXiv: 1801.09842. Google Scholar |
[17] |
J. Song and B. Weinkove,
On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61 (2008), 210-229.
doi: 10.1002/cpa.20182. |
[18] |
G. Székelyhidi,
Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom., 109 (2018), 337-378.
doi: 10.4310/jdg/1527040875. |
[19] |
G. Tian,
On the existence of solutions of a class of Monge-Ampère equations, Acta Math. Sinica (N.S.), 4 (1988), 250-265.
doi: 10.1007/BF02560581. |
[20] |
G. Tian and S. T. Yau,
Complete Kähler manifolds with zero Ricci curvature. Ⅰ, J. Amer. Math. Soc., 3 (1990), 579-609.
doi: 10.2307/1990928. |
[21] |
G. Tian and S. T. Yau,
Complete Kähler manifolds with zero Ricci curvature. Ⅱ, Invent. Math., 106 (1991), 27-60.
doi: 10.1007/BF01243902. |
[22] |
V. Tosatti and B. Weinkove,
The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.
doi: 10.1090/S0894-0347-2010-00673-X. |
[23] |
V. Tosatti and B. Weinkove, The complex Monge-Ampère equation with a gradient term, preprint, arXiv: 1906.10034. Google Scholar |
[24] |
S. T. Yau,
On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Ⅰ, Comm. Pure Appl. Math., 31 (1978), 339-411.
doi: 10.1002/cpa.3160310304. |
[25] |
R. R. Yuan,
On a class of fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds, Canad. J. Math., 70 (2018), 943-960.
doi: 10.4153/CJM-2017-015-9. |
[26] |
D. K. Zhang,
Hessian equations on closed Hermitian manifolds, Pacific J. Math., 291 (2017), 485-510.
doi: 10.2140/pjm.2017.291.485. |
[1] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[2] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[3] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[4] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[5] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[6] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[7] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[8] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[9] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[10] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[11] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[12] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[13] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[14] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[15] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[16] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[17] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[18] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[19] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[20] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]