doi: 10.3934/dcds.2020378

Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $

1. 

School of Mathematics Department, Shandong University, Jinan 250100, China

* Corresponding author: Lei Liu

Received  May 2020 Revised  September 2020 Published  November 2020

Fund Project: The first author is supported by NSFC grant No.11425105

There is a long standing conjecture that there are at least $ n $ closed characteristics on any compact convex hypersurface $ \Sigma $ in $ \mathbb{R}^{2n} $. In this paper, we provide some new estimates and prove that there are at least $ [\frac{3n}{4}] $ closed characteristics on $ \Sigma $ for any positive integer $ n $, where $ \Sigma $ satisfies $ \Sigma = P\Sigma $ for a certain class of symplectic matrix $ P $. These results are not considered in previous papers.

Citation: Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020378
References:
[1]

S. E. CappellR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[2]

Y. Dong and Y. Long, Closed characteristics on partically symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, J. Diff. Equ., 196 (2004), 226-248.  doi: 10.1016/S0022-0396(03)00168-2.  Google Scholar

[3]

H. Duan and H. Liu, Multiplicity and ellipticity of closed characteristics on compact star-shaped hypersurfaces in $\mathbb{R}^2n$,, Cal. Variations and PDEs, 56 (2017), Paper No. 65, 30 pp. doi: 10.1007/s00526-017-1173-1.  Google Scholar

[4]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.  Google Scholar

[5]

I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic trajectories, Commun. Math. Phys., 113 (1987), 419-469.  doi: 10.1007/BF01221255.  Google Scholar

[6]

I. Ekeland and J. M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Annals of Math., 112 (1980), 283-319.  doi: 10.2307/1971148.  Google Scholar

[7]

I. Ekeland and L. Lassoued, Multiplicite des trajectoires fermees d'un systeme hamiltonien sur une hypersurface d'energie convexe, Ann. IHP. Anal. Non Linéaire, 4 (1987), 307-335.  doi: 10.1016/S0294-1449(16)30362-6.  Google Scholar

[8]

E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45 (1978), 139-174.  doi: 10.1007/BF01390270.  Google Scholar

[9]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.  doi: 10.1007/s00220-009-0860-y.  Google Scholar

[10]

C. LiuY. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^2n$, Math. Ann., 323 (2002), 201-215.  doi: 10.1007/s002089100257.  Google Scholar

[11]

C. Liu and S. Tang, Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Studies, 15 (2015), 963-990.  doi: 10.1515/ans-2015-0412.  Google Scholar

[12]

C. Liu and D. Zhang, Iteration theory of L-index and multiplicity of brake orbits, J. Diff. Equ., 257 (2014), 1194-1245.  doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[13]

H. Liu, Multiple $P$-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, Cal. Variations and PDEs, 49 (2014), 1121-1147.  doi: 10.1007/s00526-013-0614-8.  Google Scholar

[14]

Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, No. 207, Birkhauser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[15]

Y. Long and C. Zhu, Maslov-type index theorey for symplectic paths and spectral flow Ⅱ, Chinese. Ann. Math. Ser. B, 21 (2000), 89-108.  doi: 10.1142/S0252959900000133.  Google Scholar

[16]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^2n$, Ann. Math., 155 (2002), 317-368.  doi: 10.2307/3062120.  Google Scholar

[17]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[18]

P. H. Rabinowitz, Peroidic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.  Google Scholar

[19]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian system, Nonlinear Anal., 11 (1987), 599-611.  doi: 10.1016/0362-546X(87)90075-7.  Google Scholar

[20]

J. Robbin and D. Salamon, The maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[21]

A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197.  doi: 10.24033/bsmf.2094.  Google Scholar

[22]

A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann., 283 (1989), 241-255.  doi: 10.1007/BF01446433.  Google Scholar

[23]

W. Wang, Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^8$, Adv. Math., 297 (2016), 93-148.  doi: 10.1016/j.aim.2016.03.044.  Google Scholar

[24]

W. WangX. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on the conpact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.  doi: 10.1215/S0012-7094-07-13931-0.  Google Scholar

[25]

A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. Math., 108 (1978), 507-518.  doi: 10.2307/1971185.  Google Scholar

[26]

D. Zhang, P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $\mathbb{R}^2n$, Discrete Continuous Dynam. Systems, 33 (2013), 947-964.  doi: 10.3934/dcds.2013.33.947.  Google Scholar

show all references

References:
[1]

S. E. CappellR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.  Google Scholar

[2]

Y. Dong and Y. Long, Closed characteristics on partically symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, J. Diff. Equ., 196 (2004), 226-248.  doi: 10.1016/S0022-0396(03)00168-2.  Google Scholar

[3]

H. Duan and H. Liu, Multiplicity and ellipticity of closed characteristics on compact star-shaped hypersurfaces in $\mathbb{R}^2n$,, Cal. Variations and PDEs, 56 (2017), Paper No. 65, 30 pp. doi: 10.1007/s00526-017-1173-1.  Google Scholar

[4]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.  Google Scholar

[5]

I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic trajectories, Commun. Math. Phys., 113 (1987), 419-469.  doi: 10.1007/BF01221255.  Google Scholar

[6]

I. Ekeland and J. M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Annals of Math., 112 (1980), 283-319.  doi: 10.2307/1971148.  Google Scholar

[7]

I. Ekeland and L. Lassoued, Multiplicite des trajectoires fermees d'un systeme hamiltonien sur une hypersurface d'energie convexe, Ann. IHP. Anal. Non Linéaire, 4 (1987), 307-335.  doi: 10.1016/S0294-1449(16)30362-6.  Google Scholar

[8]

E. R. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45 (1978), 139-174.  doi: 10.1007/BF01390270.  Google Scholar

[9]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.  doi: 10.1007/s00220-009-0860-y.  Google Scholar

[10]

C. LiuY. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^2n$, Math. Ann., 323 (2002), 201-215.  doi: 10.1007/s002089100257.  Google Scholar

[11]

C. Liu and S. Tang, Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Studies, 15 (2015), 963-990.  doi: 10.1515/ans-2015-0412.  Google Scholar

[12]

C. Liu and D. Zhang, Iteration theory of L-index and multiplicity of brake orbits, J. Diff. Equ., 257 (2014), 1194-1245.  doi: 10.1016/j.jde.2014.05.006.  Google Scholar

[13]

H. Liu, Multiple $P$-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, Cal. Variations and PDEs, 49 (2014), 1121-1147.  doi: 10.1007/s00526-013-0614-8.  Google Scholar

[14]

Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, No. 207, Birkhauser, Basel, 2002. doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[15]

Y. Long and C. Zhu, Maslov-type index theorey for symplectic paths and spectral flow Ⅱ, Chinese. Ann. Math. Ser. B, 21 (2000), 89-108.  doi: 10.1142/S0252959900000133.  Google Scholar

[16]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^2n$, Ann. Math., 155 (2002), 317-368.  doi: 10.2307/3062120.  Google Scholar

[17]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.  Google Scholar

[18]

P. H. Rabinowitz, Peroidic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.  doi: 10.1002/cpa.3160310203.  Google Scholar

[19]

P. H. Rabinowitz, On the existence of periodic solutions for a class of symmetric Hamiltonian system, Nonlinear Anal., 11 (1987), 599-611.  doi: 10.1016/0362-546X(87)90075-7.  Google Scholar

[20]

J. Robbin and D. Salamon, The maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.  Google Scholar

[21]

A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197.  doi: 10.24033/bsmf.2094.  Google Scholar

[22]

A. Szulkin, An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann., 283 (1989), 241-255.  doi: 10.1007/BF01446433.  Google Scholar

[23]

W. Wang, Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^8$, Adv. Math., 297 (2016), 93-148.  doi: 10.1016/j.aim.2016.03.044.  Google Scholar

[24]

W. WangX. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on the conpact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.  doi: 10.1215/S0012-7094-07-13931-0.  Google Scholar

[25]

A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. Math., 108 (1978), 507-518.  doi: 10.2307/1971185.  Google Scholar

[26]

D. Zhang, P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $\mathbb{R}^2n$, Discrete Continuous Dynam. Systems, 33 (2013), 947-964.  doi: 10.3934/dcds.2013.33.947.  Google Scholar

[1]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[4]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[5]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[7]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[8]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[9]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[10]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[11]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[12]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[15]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[16]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[17]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[20]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.338

Article outline

[Back to Top]